[1] MOHD S, MOHAMAD S, ZAHARUDDIN M, et al. Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment[J]. Computers and Electronics in Agriculture, 2019, 157: 488-499.
[2] LI H L, QUAN L Z, GUO Y H, at al. Improving agricultural robot patch-spraying accuracy and precision through combined error adjustment[J]. Computers and Electronics in Agriculture, 2023, 207: 107755.
[3] DAIRATH M H, WAQAR AKRAM M, MEHMOOD M, et al. Computer vision-based prototype robotic picking cum grading system for fruits[J]. Smart Agricultural Technology, 2023, 4: 100210.
[4] 许裕良, 杜江辉, 雷泽宇, 等. 水下机器人在渔业中的应用现状与关键技术综述[J]. 机器人, 2023, 45(1): 110-128.
XU Y L, DU J H, LEI Z Y, et al. Review: applications status and key technologies of underwater robots in fishery[J]. Robot, 2023, 45(1): 110-128.
[5] SHI J Q, TAN L, ZHANG H T, et al. Adaptive multi-UAV path planning method based on improved gray wolf algorithm[J]. Computers and Electrical Engineering, 2022, 104: 108377.
[6] 刘景森, 袁蒙蒙, 李煜. 基于改进的樽海鞘群算法求解机器人路径规划问题[J]. 计算机研究与发展,2022, 59(6): 1297-1314.
LIU J S, YUAN M M, LI Y. Robot path planning based on improved salp swarm algorithm[J]. Journal of Computer Research and Development, 2022, 59(6): 1297-1314.
[7] 刘志强, 何丽, 袁亮, 等.采用改进灰狼算法的移动机器人路径规划[J]. 西安交通大学学报, 2022, 56(10): 49-60.
LIU Z Q, HE L, YUAN L, et al. Path planning of mobile robot based on TGWO algorithm[J]. Journal of Xi’an Jiaotong University, 2022, 56(10): 49-60.
[8] 张婉莹, 冷欣, 贾鹤鸣. 采用改进黑猩猩优化算法的特征选择[J]. 三明学院学报, 2022, 39(3): 37-45.
ZHANG W Y, LENG Y, JIA H M. Feature selection using improved chimpanzee optimization algorithm[J]. Journal of Sanming University, 2022, 39(3): 37-45.
[9] 艾尔肯·亥木都拉, 穆占海, 郑威强. 采用多策略改进黑猩猩算法的农业机器人路径规划[J]. 西安交通大学学报, 2023, 57(8): 161-171.
HAIMUDULA A, MU Z H, ZHENG W Q. Agricultural robots using multi-strategy improved chimp optimization[J].Journal of Xi’an Jiaotong University, 2023, 57(8): 161-171.
[10] KAIDI W, KHISHE M, MOHAMMADI M. Dynamic levy flight chimp optimization[J]. Knowledge-Based Systems, 2022, 235: 117625.
[11] YU X B, JIANG N J, WANG X M, et al. A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning[J]. Expert Systems with Applications, 2023, 215: 119327.
[12] LI X D. Efficient differential evolution using speciation for multimodal function optimization[C]//Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, 2005: 873-880.
[13] WANG R, HAO K R, HUANG B, et al. Adaptive niching particle swarm optimization with local search for multimodal optimization[J]. Applied Soft Computing, 2022, 133: 109923.
[14] 秦宏伍, 王立铮, 傅渝, 等. 基于多策略结合的灰狼优化算法及应用[J]. 山东大学学报 (理学版), 2024, 59(3): 51-60.
QIN H W,WANG L Z,FU Y,et al. Grey wolf optimization algorithm based on multi strategy combination and its application[J]. Journal of Shandong University (Natural Science), 2024, 59(3): 51-60.
[15] VASU G T, FIZA S, KUMAR A K, et al. Improved chimp optimization algorithm (ICOA) feature selection and deep neural network framework for internet of things (IOT) based android malware detection[J]. Measurement: Sensors, 2023, 28: 100785.
[16] 何庆, 罗仕杭. 混合改进策略的黑猩猩优化算法及其机械应用[J]. 控制与决策, 2023, 38(2): 354-364.
HE Q, LUO S H. Chimp optimization algorithm based on hybrid improvement strategy and its mechanical application[J]. Control and Decision, 2023, 38(2): 354-364.
[17] 于明洋, 李婷, 许静. 基于IMQ惯性权重策略的自适应灰狼优化算法[J]. 计算机科学, 2024, 51(7): 354-361.
YU M Y, LI T, XU J. Adaptive grey wolf optimizer based on IMQ inertia weight strategy[J].Computer Science, 2024, 51(7): 354-361.
[18] 孟团兴, 覃华. 解复杂多峰优化问题的双引导机制灰狼算法[J].计算机工程与设计, 2023, 44(5): 1378-1384.
MENG T X, QIN H. Grey wolf optimizer with dual guidance mechanism for complex multimodal problems[J].Computer Engineering and Design, 2023, 44(5): 1378-1384.
[19] HU G, DU B, LI H N. Quadratic interpolation boosted black widow spider?inspired optimization algorithm with wavelet mutation[J].Mathematics and Computers in Simulation, 2022, 200: 428-467.
[20] ZHAO W G, ZHANG Z X, WANG L Y. Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103300.
[21] 刘明霞, 花静, 柯李, 等. 中国儿童发育性协调障碍现况分析[J]. 中华儿科杂志, 2021, 59(11): 928-934.
LIU M X, HUA J, HE L, et al. Analysis of developmental coordination disorder in Chinese children[J].Chinese Journal of Pediatrics, 2021, 59(11): 928-934.
[22] KHISHE M, NEZHADSHAHBIDAGHI M, MOSAVI M R, et al. A weighted chimp optimization algorithm[J]. IEEE Access, 2021, 9: 158508-158539.
[23] 黄倩, 刘升, 李萌萌, 等. 多策略黑猩猩优化算法研究及其工程应用[J]. 计算机工程与应用, 2022, 58(19): 174-183.
HUANG Q, LIU S, LI M M, et al. Multi strategy chimp optimization algorithm and its application of engineering problem[J]. Computer Engineering and Applications, 2022, 58(19): 174-183.
[24] KHISHE M,MOSAVI M R.Chimp optimization algorithm [J]. Expert Systems with Applications, 2020, 149: 113338.
[25] HASHIM F A, HUSSAIN K, HOUSEIN E H, et al. Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems[J]. Applied Intelligence, 2021, 51: 1531-1551.
[26] 力尚龙, 刘建华, 贾鹤鸣. 融合多狩猎协调策略的爬行动物搜索算法[J].计算机应用, 2024, 44(9): 2818-2828.
LI S L, LIU J H, JIA H M. Reptile search algorithm based on multi-hunting coordination strategy[J]. Journal of Computer Applications, 2024, 44(9): 2818-2828. |