[1] DIFONZO N, BORDIA P. Rumor psychology: social and organizational approaches[EB/OL].(2007). American Psychological Association. https://doi.org/10.1037/11503-000.
[2] COHEN J, NORMILE D. New SARS-like virus in China triggers alarm[J]. Science, 2020, 367(6475): 234-235.
[3] MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), 2016: 3818-3824.
[4] AHMAD T, FAISAL M S, RIZWAN A, et al. Efficient fake news detection mechanism using enhanced deep learning model[J]. Applied Sciences, 2022, 12(3): 1743.
[5] BIAN T, XIAO X, XU T Y, et al. Rumor detection on social media with bi-directional graph convolutional networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 549-556.
[6] BAI N, MENG F R, RUI X B, et al. Rumor detection based on a source-replies conversation tree convolutional neural net[J]. Computing, 2022, 104: 1155-1171.
[7] MA J, GAO W, WONG K F. Rumor detection on twitter with tree-structured recursive neural networks[C]//Proceedings of the Association for Computational Linguistics, 2018.
[8] VAIBHAV V, ANNASAMY R M, HOVY E. Do sentence interactions matter? leveraging sentence level representations for fake news classification[J]. arXiv:1910.12203, 2019.
[9] ZHOU X, ZAFARANI R. A survey of fake news: fundamental theories, detection methods, and opportunities[J]. ACM Computing Surveys (CSUR), 2020, 53(5): 1-40.
[10] MA J, GAO W, WONG K F. Detect rumor and stance jointly by neural multi-task learning[C]//Proceedings of the Web Conference, 2018: 585-593.
[11] WAN S Z, TANG B, DONG F M, et al. A writing style-based multi-task model with the hierarchical attention for rumor detection[J]. International Journal of Machine Learning and Cybernetics, 2023, 14: 3993-4008.
[12] KOCHKINA E, LIAKATA M, ZUBIAGA A. All-in-one: multi-task learning for rumour verification[J]. arXiv:1806. 03713, 2018.
[13] SINGH J P, KUMAR A, RANA N P, et al. Attention-based LSTM network for rumor veracity estimation of tweets[J]. Information Systems Frontiers, 2020, 24: 459-474.
[14] 郭铃霓, 黄舰, 吴兴财, 等. 基于双分支网络联合训练的虚假新闻检测[J]. 计算机工程与应用,2022, 58(15): 153-161.
GUO L N, HUANG J, WU X C, et al. Fake news detection based on joint training two-branch network[J]. Computer Engineering and Applications, 2022, 58(15): 153-161.
[15] 戚力鑫, 万书振, 唐斌, 等. 基于注意力机制的多模态融合谣言检测方法[J]计算机工程与应用, 2022, 58(19): 209-217.
QI L X, WAN S Z, TANG B, et al. Multimodal fusion rumor detection method based on attention mechanism[J]. Computer Engineering and Applications, 2022, 58(19): 209-217.
[16] 邱宁佳, 杨长庚, 王鹏, 等. 改进卷积神经网络的文本主题识别算法研究[J]. 计算机工程与应用, 2022, 58(2): 161-168.
QIU N J, YANG C G, WANG P, et al. Research on text topic recognition algorithm based on improved convolutional neural network[J]. Computer Engineering and Applications, 2022, 58(2): 161-168.
[17] LIAO H, PENG J H, HUANG Z Y, et al. MUSER: a multi-step evidence retrieval enhancement framework for fake news detection[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023: 4461-4472.
[18] CHEN Z W, HU L M, LI W X, et al. Causal intervention and counterfactual reasoning for multi-modal fake news detection[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2023: 627-638.
[19] ZHANG P F, RAN H Y, JIA C Y, et al. A lightweight propagation path aggregating network with neural topic model for rumor detection[J]. Neurocomputing, 2021, 458: 468-477.
[20] WU Z Y, PI D C, CHEN J F, et al. Rumor detection based on propagation graph neural network with attention mechanism[J]. Expert Systems with Applications, 2020, 158: 113595.
[21] RAN H Y, JIA C Y, ZHANG P F, et al. MGAT-ESM: multi-channel graph attention neural network with event-sharing module for rumor detection[J]. Information Sciences, 2022, 592: 402-416.
[22] WU J Y, HOOI B. DECOR: degree-corrected social graph refinement for fake news detection[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023: 2582-2593.
[23] ZHANG Y, YANG Q. A survey on multi-task learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 34(12): 5586-5609.
[24] 沈瑞琳, 潘伟民, 彭成. 基于多任务学习的微博谣言检测方法[J]. 计算机工程与应用, 2021, 57(24): 192-197.
SHEN R L, PAN W M, PENG C. Microblog rumor detection method based on multi-task learning[J]. Computer Engineering and Applications, 2021, 57(24): 192-197.
[25] COLLOBERT R, WESTON J. A unified architecture for natural language processing: deep neural networks with multitask learning[C]//Proceedings of the 25th International Conference on Machine Learning, 2008: 160-167.
[26] SUN L, RAO Y, LAN Y Q, et al. HG-SL: jointly learning of global and local user spreading behavior for fake news early detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 5248-5256.
[27] CASTILLO C, MENDOZA M, POBLETE B. Information credibility on twitter[C]//Proceedings of the 20th International Conference on World Wide Web, 2011: 675-684.
[28] YANG F, LIU Y, YU X H, et al. Automatic detection of rumor on sina weibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, 2012: 1-7.
[29] MA J, GAO W, WEI Z Y, et al. Detect rumors using time series of social context information on microblogging websites[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, 2015: 1751-1754.
[30] HUANG Q, ZHOU C, WU J, et al. Deep spatial-temporal structure learning for rumor detection on Twitter[J]. Neural Computing and Applications, 2020, 35(3): 05236.
[31] SUN M Z, ZHANG X, ZHENG J Q, et al. DDGCN: dual dynamic graph convolutional networks for rumor detection on social media[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 4611-4619.
[32] HAN S, YU K, SU X, et al. Combining temporal and interactive features for rumor detection: a graph neural network based model[J]. Neural Processing Letters, 2023, 55(5): 5675-5691. |