Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (5): 134-146.DOI: 10.3778/j.issn.1002-8331.2309-0473
• Pattern Recognition and Artificial Intelligence • Previous Articles Next Articles
CHEN Zejian, LI Zuoyong, HU Rong, FAN Haoyi
Online:
2025-03-01
Published:
2025-03-01
陈泽健,李佐勇,胡蓉,樊好义
CHEN Zejian, LI Zuoyong, HU Rong, FAN Haoyi. Time Series Anomaly Detection Based on Restricted Distribution Mapping and Pseudo Anomaly Calibration[J]. Computer Engineering and Applications, 2025, 61(5): 134-146.
陈泽健, 李佐勇, 胡蓉, 樊好义. 受限分布映射和伪异常校准引导下的时序异常检测[J]. 计算机工程与应用, 2025, 61(5): 134-146.
[1] ZHANG Y X, CHEN Y Q, PAN Z W. A deep temporal model for mental fatigue detection[C]//Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics , 2018: 1879-1884. [2] LI D, CHEN D C, JIN B H, et al. MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks[C]//Proceedings of the International Conference on Artificial Neural Networks, 2019: 703-716. [3] SARDA K, ACERNESE A, NOLE V, et al. A multi-step anomaly detection strategy based on robust distances for the steel industry[J]. IEEE Access, 2021, 9: 53827-53837. [4] 宋春雷, 赵旭俊, 高亚星, 等. 采用分段特征表示的异常序列检测算法[J]. 计算机工程与应用, 2023, 59(9): 262-271. SONG C L, ZHAO X J, GAO Y X, et al. Anomaly series detection algorithm based on segmentation feature representation[J]. Journal of Computer Engineering and Applications, 2023, 59(9): 262-271. [5] 王昊天, 郑栋毅, 刘芳, 等. 面向多元时序数据的个性化联邦异常检测方法[J]. 计算机工程与应用, 2022, 58(11): 60-65. WANG H T, ZHENG D Y, LIU F, et al. Personalized federated anomaly detection method for multivariate time series data[J]. Journal of Computer Engineering and Applications, 2022, 58(11): 60-65. [6] 展鹏, 陈琳, 曹鲁慧, 等. 核转折点裁剪表示的时间序列异常检测算法[J]. 计算机工程与应用, 2020, 56(23): 130-138. ZHAN P, CHEN L, CAO L H, et al. Time series anomaly detection based on kernel turning points clipped representation[J]. Journal of Computer Engineering and Applications, 2020, 56(23): 130-138. [7] 席亮, 王瑞东, 樊好义, 等. 基于样本关联感知的无监督深度异常检测模型[J]. 计算机学报, 2021, 44(11): 2317-2331. XI L, WANG R D, FAN H Y, et al. Sample-correlation-aware unsupervised deep anomaly detection model[J]. Chinese Journal of Computers, 2021, 44(11): 2317-2331. [8] 黄训华, 张凤斌, 樊好义, 等. 基于多模态对抗学习的无监督时间序列异常检测[J]. 计算机研究与发展, 2021, 58(8): 1655-1667. HUANG X H, ZHANG F B, FAN H Y, et al. Multimodal adversarial learning based unsupervised time series anomaly detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1655-1667. [9] 席亮, 刘涵, 樊好义, 等. 基于深度对抗学习潜在表示分布的异常检测模型[J]. 电子学报, 2021, 49(7): 1257-1265. XI L, LIU H, FAN H Y, et al. Deep adversarial learning latent representation distribution model for anomaly detection[J]. Acta Electronica Sinica, 2021, 49(7): 1257-1265. [10] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]//Proceedings of the International Conference on Management of Data, 2000: 93-104. [11] SCHOLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443-1471. [12] SAKURADA M, YAIRI T. Anomaly detection using autoencoders with nonlinear dimensionality reduction[C]//Proceedings of the 2nd Workshop on Machine Learning for Sensory Data Analysis, 2014: 4-11. [13] ZHANG Y X, WANG J D, CHEN Y Q, et al. Adaptive memory networks with self-supervised learning for unsupervised anomaly detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(12): 12068-12080. [14] ERGEN T, KOZAT S S. Unsupervised anomaly detection with LSTM neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(8): 3127-3141. [15] LU W N, CHENG Y, XIAO C, et al. Unsupervised sequential outlier detection with deep architectures[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4321-4330. [16] ZHENG Y, KOH H Y, JIN M, et al. Correlation-aware spatial-temporal graph learning for multivariate time-series anomaly detection[J]. arXiv:2307.08390, 2023. [17] XU J H, WU H X, WANG J M, et al. Anomaly transformer: time series anomaly detection with association discrepancy[C]//Proceedings of the International Conference on Learning Representations, 2021. [18] TAX D M, DUIN R P. Support vector data description[J]. Machine Learning, 2004, 54: 45-66. [19] PAFFENROTH R, DU T P, NONG R, et al. Space-time signal processing for distributed pattern detection in sensor networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(1): 38-49. [20] SCHOLKOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319. [21] HOFFMANN H. Kernel PCA for novelty detection[J]. Pattern Recognition, 2007, 40(3): 863-874. [22] PAFFENROTH R, KAY K, SERVI L. Robust PCA for anomaly detection in cyber networks[J]. arXiv:1801.01571,2018. [23] GüNNEMANN N, GUNNEMANN S, FALOUTSOS C. Robust multivariate autoregression for anomaly detection in dynamic product ratings[C]//Proceedings of the 23rd International Conference on World Wide Web, 2014: 361-372. [24] MOAYEDI H Z, MASNADI-SHIRAZI M A. Arima model for network traffic prediction and anomaly detection[C]//Proceedings of the 2008 International Symposium on Information Technology, 2008, 4: 1-6. [25] ZHANG C K, LI S C, ZHANG H Y, et al. VELC: a new variational autoencoder based model for time series anomaly detection[J]. arXiv:1907.01702,2019. [26] LAI G K, CHANG W C, YANG Y M, et al. Modeling long-and short-term temporal patterns with deep neural networks[C]//Proceedings of the 41st International Conference on Research & Development in Information Retrieval, 2018: 95-104. [27] WONG L, LIU D, BERTI-EQUILLE L, et al. AER: auto-encoder with regression for time series anomaly detection[C]//Proceedings of the 2022 IEEE International Conference on Big Data, 2022: 1152-1161. [28] XIAO Q F, SHAO S K, WANG J. Memory-augmented adversarial autoencoders for multivariate time-series anomaly detection with deep reconstruction and prediction[J]. arXiv:2110.08306, 2021. [29] DARBAN Z Z, WEBB G I, PAN S, et al. CARLA: a self-supervised contrastive representation learning approach for time series anomaly detection[J]. arXiv:2308.09296,2023. [30] CHEN K, FENG M, WIRJANTO T S. Time-series anomaly detection via contextual discriminative contrastive learning[J]. arXiv:2304.07898, 2023 [31] XU H Z, WANG Y J, JIAN S L, et al. Calibrated one-class classification for unsupervised time series anomaly detection[J]. arXiv:2207.12201, 2022. [32] XIAO F, SUN R, FAN J. Restricted generative projection for one-class classification and anomaly detection[J]. arXiv:2307.04097,2023. [33] ABDULAAL A, LIU Z, LANCEWICKI T. Practical approach to asynchronous multivariate time series anomaly detection and localization[C]//Proceedings of the 27th Conference on Knowledge Discovery & Data Mining, 2021: 2485-2494. [34] MATHUR A P, TIPPENHAUER N O. SWaT: a water treatment testbed for research and training on ICS security[C]//Proceedings of the 2016 International Workshop on Cyber-Physical Systems for Smart Water Networks, 2016: 31-36. [35] ALTUN K, BARSHAN B, TUNCEL O. Comparative study on classifying human activities with miniature inertial and magnetic sensors[J]. Pattern Recognition, 2010, 43(10): 3605-3620. [36] ANGRYK R, MARTENS P, AYDIN B, et al. SWAN-SF[EB/OL]. (2019-01-31)[2023-08-01]. https://doi.org/10.7910/DVN/EBCFKM. [37] LAI K H, ZHA D C, XU J J, et al. Revisiting time series outlier detection: definitions and benchmarks[C]//Proceedings of the 35th Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2021. [38] MORITZ S, REHBACH F, CHANDRASEKARAN S, et al. GECCO industrial challenge 2018 dataset: a water quality dataset for the “Internet of Things: online anomaly detection for drinking water quality”[C]//Proceedings of the Genetic and Evolutionary Computation Conference, 2018. [39] ZHAO Y, NASRULLAH Z, LI Z. Pyod: a python toolbox for scalable outlier detection[J]. arXiv:1901.01588, 2019. [40] BHATNAGAR A, KASSIANIK P, LIU C H, et al. Merlion: a machine learning library for time series[J]. arXiv:2109. 09265, 2021. [41] BALDI P. Autoencoders, unsupervised learning, and deep architectures[C]//Proceedings of the Workshop on Unsupervised and Transfer Learning, 2012: 37-49. [42] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2014: 3104-3112. [43] RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C]//Proceedings of the International Conference on Machine Learning, 2018: 4393-4402. [44] ZONG B, SONG Q, MIN M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]//Proceedings of the International Conference on Learning Representations, 2018. [45] SU Y, ZHAO Y J, NIU C H, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th International Conference on Knowledge Discovery & Data Mining, 2019: 2828-2837. [46] ZHAO H, WANG Y J, DUAN J Y, et al. Multivariate time-series anomaly detection via graph attention network[C]//Proceedings of the 2020 IEEE International Conference on Data Mining, 2020: 841-850. [47] QIU C, PFROMMER T, KLOFT M, et al. Neural transformation learning for deep anomaly detection beyond images[C]//Proceedings of the International Conference on Machine Learning, 2021: 8703-8714. [48] MIAO Q C, XU C F, ZHAN J, et al. An unsupervised short-and long-term mask representation for multi-variate time series anomaly detection[C]//Proceedings of the International Conference on Neural Information Processing, 2022: 504-516. [49] TULI S, CASALE G, JENNINGS N R. TranAD: deep transformer networks for anomaly detection in multivariate time series data[J]. Proceedings of the VLDB Endowment, 2022, 15(6): 1201-1214. [50] LI Z, ZHAO Y, HU X Y. ECOD: unsupervised outlier detection using empirical cumulative distribution functions[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(12): 12181-12193. |
[1] | CHEN Peng, DENG Miaolei, FAN Haoyi, ZHANG Dexian, HAN Han. Self-Supervised Atrial Fibrillation Anomaly Detection Method Guided by Electrocardiogram Features [J]. Computer Engineering and Applications, 2025, 61(2): 208-218. |
[2] | CHEN Xu, ZHANG Shuo, JING Yongjun, WANG Shuyang. Log Anomaly Detection Model Based on Hybrid Feature Balanced Graph Attention Network [J]. Computer Engineering and Applications, 2025, 61(1): 308-320. |
[3] | YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(9): 65-78. |
[4] | LIU Shipeng, NING Dejun, MA Jue. LSTformer Model for Photovoltaic Power Prediction [J]. Computer Engineering and Applications, 2024, 60(9): 317-325. |
[5] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[6] | CHEN Wenli, SU Yu, CHEN Lingli, GAO Xin, CHENG Yingying, ZOU Bo. Double Feature Hierarchical Embedding Multivariate Time Series Anomaly Detection Method [J]. Computer Engineering and Applications, 2024, 60(21): 142-153. |
[7] | LI Baozhen, KONG Qianwen, SU Yuwei. Anomaly Detection on Attribute Network by Multi-Angle Contrastive Learning [J]. Computer Engineering and Applications, 2024, 60(19): 167-177. |
[8] | WU Xiaoying, DENG Hongxia, HU Yuliang, LI Ying, MU Huimin. BSPST: Fault Classification Algorithm for Deformation Monitoring Instruments [J]. Computer Engineering and Applications, 2024, 60(18): 306-315. |
[9] | TANG Zengjin, XU Zhenshun, SU Mengyao, LIU Na, WANG Zhenbiao, ZHANG Wenhao. Review of Frequent Temporal Pattern Mining Methods [J]. Computer Engineering and Applications, 2024, 60(17): 48-61. |
[10] | HUANG Xiuli, YU Pengfei, GAO Xianzhou. Secure Aggregation Scheme for Horizontal Fedetated Learning System [J]. Computer Engineering and Applications, 2024, 60(14): 294-305. |
[11] | WU Yanwen, TAN Xichen, GE Di, HAN Yuan, XIONG Xujie, CHEN Yudi. Combining Reconstruction and Graph Prediction for Multi-Dimensional Time Series Anomaly Detection Framework [J]. Computer Engineering and Applications, 2024, 60(13): 301-310. |
[12] | XIE Fengyun, LI Gang, WANG Linglan, LIU Hui, WANG Gan. Gearbox Fault Diagnosis Based on Improved Time Series Gray Scale Image and Deep Learning [J]. Computer Engineering and Applications, 2024, 60(13): 338-344. |
[13] | CHEN Jiale, CHEN Xu, JING Yongjun, WANG Shuyang. Survey of Application of Graph Neural Network in Anomaly Detection [J]. Computer Engineering and Applications, 2024, 60(13): 51-65. |
[14] | XIE Wei, LU Shida, SHI Kuanzhi, WANG Honglan, GU Rongbin, HUANG Jun, LI Jing. Anomaly Detection Method for Industrial IoT Timing Data [J]. Computer Engineering and Applications, 2024, 60(12): 270-282. |
[15] | GAO Xiaoyu, ZHAO Xiaoyong, WANG Lei. Self-Supervised Tabular Data Anomaly Detection Method Based on Knowledge Enhancement [J]. Computer Engineering and Applications, 2024, 60(10): 140-147. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 54
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||