[1] KOPARDEKAR P, RIOS J, PREVOT T, et al. Unmanned aircraft system traffic management (UTM) concept of operations[C]//Proceedings of AIAA Aviation Technology, Integration, and Operations Conference, 2016.
[2] 张洪海, 邹依原, 张启钱, 等. 未来城市空中交通管理研究综述[J]. 航空学报, 2021, 42(7): 82-106.
ZHANG H H, ZOU Y Y, ZHANG Q Q, et al. Future urban air mobility management: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 82-106.
[3] JENIE Y I, KAMPEN E, ELLERBROEK J, et al. Taxonomy of conflict detection and resolution approaches for unmanned aerial vehicle in an integrated airspace[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(3): 558-567.
[4] 刘继新, 蒋伶潇, 刘禹汐, 等. 无人机冲突探测与解脱技术研究概述[J]. 科学技术与工程, 2023, 23(26): 11081-11089.
LIU J X, JIANG L X, LIU Y X, et al. Research on UAV conflict detection and resolution technology[J]. Science Technology and Engineering, 2023, 23(26): 11081-11089.
[5] HO F, SALTA A, GERALDES R, et al. Multi-agent path finding for UAV traffic management[C]//Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, 2019: 131-139.
[6] 刘志飞, 曹雷, 赖俊, 等. 多智能体路径规划综述[J]. 计算机工程与应用, 2022, 58(20): 43-64.
LIU Z F, CAO L, LAI J, et al. Overview of multi-agent path finding[J]. Computer Engineering and Applications, 2022, 58(20): 43-64.
[7] STERN R, STURTEVANT N, FELNER A, et al. Multi-agent pathfinding: definitions, variants, and benchmarks[C]//Proceedings of the Twelfth Annual Symposium on Combinatorial Search, 2019.
[8] WALKER T T, STURTEVANT N R, FELNER A. Extended increasing cost tree search for non-unit cost domains[C]//Proceedings of the Twenty Seventh International Joint Conference on Artificial Intelligence, 2018: 534-540.
[9] LI J, TINKA A, KIESEL S, et al. Lifelong multi-agent path finding in large-scale warehouses[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 11272-11281.
[10] SILVER D. Cooperative pathfinding[C]//Proceedings of the First Artificial Intelligence and Interactive Digital Entertainment Conference, 2005: 117-122.
[11] SHARON G, STERN R, FELNER A, et al. Conflict-based search for optimal multi-agent pathfinding[J]. Artificial Intelligence, 2015, 219(2): 40-66.
[12] BARER M, SHARON G, STERN R, et al. Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem[C]//Proceedings of the Seventh Annual Symposium on Combinatorial Search, 2014.
[13] JONES M, DJAHEL S, WELSH K. Path-planning for unmanned aerial vehicles with environment complexity considerations: a survey[J]. ACM Computing Surveys, 2022, 55(11): 1-39.
[14] HO F, GONCALVES A, RIGAULT B, et al. Multi-agent path finding in unmanned aircraft system traffic management with scheduling and speed variation[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(5): 8-21.
[15] AI B, JIANG J C, YU S S, et al. Multi-agent path finding with heterogeneous edges and roundtrips[J]. Knowledge-Based Systems, 2021, 234(5): 107554.
[16] HE X Y, HE F, LI L S, et al. A route network planning method for urban air delivery[J]. Transportation Research Part E: Logistics and Transportation Review, 2022, 166: 102872.
[17] GUGAN G, HAQUE A. Path planning for autonomous drones: challenges and future directions[J]. Drones, 2023, 7(3): 169.
[18] P?TTER NETO C A, DE CARVALHO BERTOLI G, SAOTOME O. 2D and 3D A* algorithm comparison for UAS traffic management systems[C]//Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 2020: 72-76.
[19] ZAMMIT C, VAN KAMPEN E. Comparison between A* and RRT algorithms for UAV path planning[C]//Proceedings of the 2018 AIAA Guidance, Navigation, and Control Conference, 2018.
[20] 徐伟华, 聊士超, 张根瑞, 等. 改进Theta*算法的物流无人机城域三维路径规划[J]. 计算机工程与应用, 2023, 59(17): 334-340.
XU W H, LIAO S C, ZHANG G R, et al. 3D path planning of logistics UAV based on improved Theta* algorithm in metropolitan area[J]. Computer Engineering and Applications, 2023, 59(17): 334-340.
[21] CANNY J, REIF J. New lower bound techniques for robot motion planning problems[C]//Proceedings of the 28th Annual Symposium on Foundations of Computer Science (SFCS 1987), Los Angeles, CA, USA, 1987: 49-60.
[22] 甄然, 王攀, 武晓晶, 等. 基于量子遗传算法的无人机冲突解脱方法[J]. 科学技术与工程, 2020, 20(17): 6963-6969.
ZHEN R, WANG P, WU X J, et al. A method of UAVs conflict resolution based on quantum genetic algorithm[J]. Science Technology and Engineering, 2020, 20(17): 6963-6969.
[23] OOSEDO A, HATTORI H, YASUI I, et al. Unmanned aircraft system traffic management (UTM) simulation of drone delivery models in 2030 Japan[J]. Journal of Robotics and Mechatronics, 2021, 33(2): 348-362.
[24] JIANG T, GELLER J, NI D, et al. Unmanned aircraft system traffic management: concept of operation and system architecture[J]. International Journal of Transportation Science and Technology, 2016, 5(3): 123-135.
[25] LAPPAS V, ZOUMPONOS G, KOSTOPOULOS V, et al. EuroDRONE, a European UTM testbed for U-Space[C]//Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 2020: 1766-1774.
[26] XU C C, LIAO X H, TAN J M, et al. Recent research progress of unmanned aerial vehicle regulation policies and technologies in urban low altitude[J]. IEEE Access, 2020, 8: 74175-74194.
[27] MOHAMED B, CHI W C, WANG Z K, et al. Preliminary concept of adaptive urban airspace management for unmanned aircraft operations[C]//Proceedings of the 2018 AIAA Information Systems-AIAA Infotech, 2018.
[28] JUNG K, KIM S, JUNG B, et al. UTM Architecture and flight demonstration in Korea[J]. Aerospace, 2022, 9(11): 650.
[29] XUE M, RIOS J, SILVA J, et al. Fe3: an evaluation tool for low-altitude air traffic operations[C]//Proceedings of the 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia, 2018.
[30] MILLAN-ROMERA J A, ACEVEDO J J, CASTA?O á R, et al. A UTM simulator based on ROS and Gazebo[C]//Proceedings of the 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), Cranfield, UK, 2019: 132-141.
[31] RIVERA N, HERNáNDEZ C, HORMAZáBAL N, et al. The 2k neighborhoods for grid path planning[J]. Journal of Artificial Intelligence Research, 2020, 67: 81-113.
[32] GUY S, KARAMOUZAS I. Guide to anticipatory collision avoidance[M]//Game AI Pro 2: collected wisdom of game AI professionals.[S.l.]: CRC Press, 2019: 195-208.
[33] ANDREYCHUK A, YAKOVLEV K, ATZMON D, et al. Multi-agent pathfinding with continuous time[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), 2019: 39-45.
[34] ANDREYCHUK A, YAKOVLEV K, BOYARSKI E, et al. Improving continuous-time conflict based search[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 11220-11227. |