Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (21): 127-133.DOI: 10.3778/j.issn.1002-8331.2307-0200
• Pattern Recognition and Artificial Intelligence • Previous Articles Next Articles
Gadeng Luosang, Nyima Tashi
Online:
2024-11-01
Published:
2024-10-25
洛桑嘎登,尼玛扎西
Gadeng Luosang, Nyima Tashi. Research on Pre-Training Models for Tibetan Text with Character Awareness[J]. Computer Engineering and Applications, 2024, 60(21): 127-133.
洛桑嘎登, 尼玛扎西. 基于藏文字符感知的文本预训练模型方法研究[J]. 计算机工程与应用, 2024, 60(21): 127-133.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2307-0200
[1] DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. [2] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9. [3] RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. The Journal of Machine Learning Research, 2020, 21(1): 5485-5551. [4] SUN Z, LI X, SUN X, et al. Chinese pretraining enhanced by glyph and pinyin information[J]. arXiv:2106.16038,2021. [5] 蔡坤钊, 曾碧卿, 陈鹏飞. GAT: 用于自然语言理解的基于全局的对抗训练[J]. 中文信息学报, 2023, 37(3): 27-35. CAI K Z, ZENG B Q, CHEN P F. GAT: global-based adversarial training for natural language understanding[J]. Journal of Chinese Information Processing, 2023, 37(3): 27-35. [6] RAZUMOVSKAIA E, VULI? I, KORHONEN A. Data augmentation and learned layer aggregation for improved multilingual language understanding in dialogue[C]//Proceedings of the Findings of the Association for Computational Linguistics (ACL 2022), 2022: 2017-2033. [7] 马式琨, 滕冲, 李霏, 等. 基于领域特征提纯的多领域文本分类[J]. 中文信息学报, 2022, 36(8): 92-100. MA S K, TENG C, LI F, et al. Multi-domain text classification based on domain feature refinement[J]. Journal of Chinese Information Processing, 2022, 36(8): 92-100. [8] LUO Q, LIU L, LIN Y, et al. Don’t miss the labels: label-semantic augmented meta-learner for few-shot text classification[C]//Proceedings of the Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021), 2021: 2773-2782. [9] 孙斌, 常开志, 李树涛. 面向医疗咨询的复杂问句意图智能理解[J]. 中文信息学报, 2023, 37(1): 112-120. SUN B, CHANG K Z, LI S T. Complex question intention understanding for medical consultation[J]. Journal of Chinese Information Processing, 2023, 37(1): 112-120. [10] ZHAO Y, HUANG J, HU W, et al. Implicit relation linking for question answering over knowledge graph[C]//Proceedings of the Findings of the Association for Computational Linguistics (ACL 2022), 2022: 3956-3968. [11] SUN Y, WANG S, LI Y, et al. Ernie: enhanced representation through knowledge integration[J]. arXiv:1904.09223, 2019. [12] SUN Y, WANG S, LI Y, et al. Ernie 2.0: a continual pre-training framework for language understanding[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 8968-8975. [13] CUI Y, CHE W, LIU T, et al. Pre-training with whole word masking for Chinese bert[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3504-3514. [14] MA W, CUI Y, SI C, et al. CharBERT: character-aware pre-trained language model[J]. arXiv:2011.01513, 2020. [15] 张朋捷, 王磊, 马博, 等. 基于预训练语言模型的维吾尔语事件抽取[J]. 计算机工程与设计, 2023, 44(5): 1487-1494. ZHANG P J, WANG L, MA B, et al. Uyghur event extraction based on pre-trained language model[J]. Computer Engineering and Design, 2023, 44(5): 1487-1494. [16] 罗凯昂, 哈里旦木·阿布都克里木, 刘畅, 等. 融合剪枝和多语微调的黏着语命名实体识别[J]. 计算机工程与应用, 2023, 59(24): 121-130. LUO K A, ABUDUKELIMU H, LIU C, et al. Agglutinative languages named entity recognition based on pruner and multilingual fine-tuning[J]. Computer Engineering and Applications, 2023, 59(24): 121-130. [17] 吴都. 基于深度神经网络的蒙古文命名实体识别研究[D]. 北京: 北京交通大学, 2021. WU D. Research on mongolian named entity recognition based on deep neural network[D]. Beijing: Beijing Jiaotong University, 2021. [18] 王炜华. 蒙古文命名实体识别研究[D]. 呼和浩特: 内蒙古大学, 2019. WANG W H. Mongolian named entity recognition[D]. Hohhot: Inner Mongolia University, 2019. [19] 胥桂仙, 刘兰寅, 张廷, 等. 基于预训练模型和图神经网络的藏文文本分类研究[J]. 东北师大学报 (自然科学版), 2023, 55(1): 52-64. XU G X, LIU L Y, ZHANG T, et al. Tibetan text classification based on pre-training model and graph neural network[J]. Journal of Northeast Normal University (Natural Science Edition), 2023, 55(1): 52-64. [20] 于韬, 尼玛次仁, 拥措, 等. 基于藏文Albert预训练语言模型的图采样与聚合实体关系抽取[J]. 中文信息学报, 2022, 36(10): 63-72. YU T, NIMA C R, YONG C, et al. Graph sampling and aggregated entity relation extraction based on Tibetan Albert pre-trained language model[J]. Journal of Chinese Information Processing, 2022, 36(10): 63-72. [21] 头旦才让, 仁青东主, 尼玛扎西. 基于CRF的藏文地名识别技术研究[J]. 计算机工程与应用, 2019, 55(18): 111-115. THUPTEN T, RINCHEN D, NYIMA T. Research on Tibetan location name recognition technology under CRF[J]. Computer Engineering and Applications, 2019, 55(18): 111-115. [22] 华却才让, 姜文斌, 赵海兴, 等. 基于感知机模型藏文命名实体识别[J]. 计算机工程与应用, 2014, 50(15): 172-176. HUA Q C R, JIANG W B, ZHAO H X, et al. Tibetan name entity recognition with perceptron model[J]. Computer Engineering and Applications, 2014, 50(15): 172-176. [23] 洛桑嘎登, 杨媛媛, 赵小兵. 基于知识融合的CRFs藏文分词系统[J]. 中文信息学报, 2015, 29(6): 213-219. LUOBSANG K, YANG Y Y, ZHAO X B. Tibetan automatic word segmentation based on conditional random fields and knowledge fusion[J]. Journal of Chinese Information Processing, 2015, 29(6): 213-219. [24] 洛桑嘎登, 群诺, 索南尖措, 等. 融合音节部件特征的藏文命名实体识别方法[J]. 厦门大学学报 (自然科学版), 2022, 61(4): 624-629. LUOSANG G, QUN N, SUONAN J, et al. Fusion of syllable component features for Tibetan named entity recognition[J]. Journal of Xiamen University (Natural Science), 2022, 61(4): 624-629. [25] ZHANG Y, WANG J, YU L C, et al. MA-BERT: learning representation by incorporating multi-attribute knowledge in transformers[C]//Proceedings of the Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021), 2021: 2338-2343. [26] LIU Z, LI F, LI G, et al. EBERT: efficient BERT inference with dynamic structured pruning[C]//Proceedings of the Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021), 2021: 4814-4823. [27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017. [28] LIU Y, OTT M, GOYAL N, et al. Roberta: a robustly optimized bert pretraining approach[J]. arXiv:1907.11692, 2019. [29] GONG H Y, GUPTA K, JAIN A, et al. IlliniMet: illinois system for metaphor detection with contextual and linguistic information[C]//Proceedings of the Second Workshop on Figurative Language Processing, 2020: 146. [30] ZOU H, YANG J, WU X. Unsupervised energy-based adversarial domain adaptation for cross-domain text classification[C]//Proceedings of the Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021), 2021: 1208-1218. [31] YANG Z, DAI Z, YANG Y, et al. XLNet: generalized autoregressive pretraining for language understanding[C]//Advances in Neural Information Processing Systems, 2019. [32] HAMBORG F, DONNAY K, MERLO P. NewsMTSC: a dataset for (multi-) target-dependent sentiment classification in political news articles[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, 2021. [33] ZANZOTTO F M, SANTILLI A, RANALDI L, et al. KERMIT: complementing transformer architectures with encoders of explicit syntactic interpretations[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020: 256-267. [34] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems, 2020: 1877-1901. [35] ETHAYARAJH K. How contextual are contextualized word representations? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings[J]. arXiv:1909.00512, 2019. [36] FLORIDI L, CHIRIATTI M. GPT-3: its nature, scope, limits, and consequences[J]. Minds and Machines, 2020, 30: 681-694. [37] SHEANG K C, SAGGION H. Controllable sentence simplification with a unified text-to-text transfer transformer[C]//Proceedings of the 14th International Conference on Natural Language Generation (INLG), Sep 20-24 2021, Aberdeen, Scotland, UK. Aberdeen: Association for Computational Linguistics, 2021. [38] 朱宇雷, 德吉卡卓, 群诺, 等. 基于图神经网络结合预训练模型的藏文短文本情感分析研究[J]. 中文信息学报, 2023, 37(2): 71-79. ZHU Y L, DEJI K, QNU N, et al. Research on sentiment analysis of Tibetan short texts based on graph neural network and pre-training model[J]. Journal of Chinese Information Processing, 2023, 37(2): 71-79. [39] 安波, 龙从军. 基于预训练语言模型的藏文文本分类[J]. 中文信息学报, 2022, 36(12): 85-93. AN B, LONG C J. Tibetan text classification based on pre-trained language model[J]. Journal of Chinese Information Processing, 2022, 36(12): 85-93. [40] 李亮. 基于ALBERT的藏文预训练模型及其应用[D]. 兰州: 兰州大学, 2020. LI L. Tibetan pre-training model and its application based on ALBERT[D]. Lanzhou: Lanzhou University, 2020. [41] 国家技术监督局. 中华人民共和国国家标准 信息技术 信息交换用 藏文编码字符集 基本集[S]. 北京: 中国标准出版社, 1997. State Bureau of Technical Supervision. National standards of the People’s Republic of China. Information technology. Basic set of Tibetan coded characters for information interchange[S]. Beijing: China Standard Press, 1997. [42] 桑塔, 达哇彭措. 信息处理用藏文字丁统计[J]. 科技信息, 2010(29): 430. SANG T, DAWA P. Statistics of Tibetan characters used in information processing[J]. Science and Technology Information, 2010(29): 430. |
[1] | ZANG Jie, LU Jintao, WANG Yan, LI Xiang, LIAO Huizhi. Chinese Short Text Sentiment Classification Model Integrating Dual-Channel Features [J]. Computer Engineering and Applications, 2024, 60(21): 116-126. |
[2] | ZHAO Jigui, QIAN Yurong, WANG Kui, HOU Shuxiang, CHEN Jiaying. Survey of Chinese Named Entity Recognition Research [J]. Computer Engineering and Applications, 2024, 60(1): 15-27. |
[3] | WU Xu, BIAN Wenqiang, XIE Xiaqing, SUN Lijuan. Chinese Event Extraction by Machine Reading Comprehension [J]. Computer Engineering and Applications, 2023, 59(16): 93-100. |
[4] | FANG Yiqiu, PENG Yang, GE Junwei. Aspect-Level Sentiment Analysis Research Integrating Dependent Syntactic Prior Knowledge [J]. Computer Engineering and Applications, 2023, 59(12): 122-131. |
[5] | NIE Ting, XING Kai, LI Jingjuan. Text Classification Model Based on Statistical Causality and Optimal Transmission#br# [J]. Computer Engineering and Applications, 2023, 59(11): 119-130. |
[6] | TIAN Zihan, LI Xin. Research on Chinese Event Detection Method Based on BERT-CRF Model [J]. Computer Engineering and Applications, 2021, 57(11): 135-139. |
[7] | ZHANG Chaoran, QIU Hangping, SUN Yi, WANG Zhongwei. Review of Machine Reading Comprehension Based on Pre-training Language Model [J]. Computer Engineering and Applications, 2020, 56(11): 17-25. |
[8] | Thupten Tsering, Rinchen Dhondub, Nyima Tashi. Research on Tibetan location Name Recognition Technology Under CRF [J]. Computer Engineering and Applications, 2019, 55(18): 111-115. |
[9] | XIA Wuji1,2, HUAQUE Cairang1. Research of tibetan personal pronouns anaphora resolution based on mixed strategy [J]. Computer Engineering and Applications, 2018, 54(7): 66-69. |
[10] | ZHAO Yue, LI Yaoqiang, XU Xiaona, WU Licheng. Near-optimal active learning for Tibetan speech recognition [J]. Computer Engineering and Applications, 2018, 54(22): 156-159. |
[11] | HUANG Xiaohui1,2, LI Jing1, MA Rui2,3. Design and research of Tibetan spoken speech corpus [J]. Computer Engineering and Applications, 2018, 54(13): 231-235. |
[12] | XU Shipeng, YANG Hongwu, WANG Haiyan. Speech unit segmentation for Tibetan speech synthesis [J]. Computer Engineering and Applications, 2015, 51(6): 199-203. |
[13] | KANG Caijun1, LONG Congjun2, JIANG Di1,2. Tibetan names recognition research based on CRF [J]. Computer Engineering and Applications, 2015, 51(3): 109-111. |
[14] | HE Xiangzhen1, WAN Fucheng1, YU Hongzhi1, WU Xihong2. Machine translation technology based on Tibetan semantic parsing [J]. Computer Engineering and Applications, 2015, 51(15): 134-137. |
[15] | WAN Fucheng1, YU Hongzhi1, WU Xihong2, HE Xiangzhen1. Research of Tibetan syntax for machine translation [J]. Computer Engineering and Applications, 2015, 51(13): 211-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||