[1] LAI B, GONG X. Saliency guided dictionary learning for weakly-supervised image parsing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 3630-3639.
[2] ZHAO R, OUYANG W, WANG X, et al. Unsupervised salience learning for person reidentification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013: 3586-3593.
[3] SHAO L, BRADY M. Specific object retrieval based on salient regions[J]. Pattern Recognition, 2006, 39(10): 1932-1948.
[4] ZHAO X, ZHANG L, PANG Y, et al. A single stream network for robust and real-time RGB-D salient object detection[C]//Proceedings of the European Conference on Computer Vision, 2020: 646-662.
[5] DING Y, LIU Z, HUANG M, et al. Depth-aware saliency detection using convolutional neural networks[J]. Journal of Visual Communication and Image Representation, 2019, 61: 1-9.
[6] ZHANG W, JI G P, WANG Z, et al. Depth quality-inspired feature manipulation for efficient RGB-D salient object detection[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 731-740.
[7] ZHANG C, CONG R, LIN Q, et al. Cross-modality discrepant interaction network for RGB-D salient object detection[C]//Proceedings of the 29th ACM International Conference on multimedia, 2021: 2094-2102.
[8] JI W, LI J, YU S, et al. Calibrated RGB-D salient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9471-9481.
[9] CHEN Q, ZHANG Z, LU Y, et al. 3-D convolutional neural networks for RGB-D salient object detection and beyond[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 35(3): 4309-4323.
[10] ZHANG P, WANG D, LU H, et al. Learning uncertain convolutional features for accurate saliency detection[C]//Proceedings of the IEEE International Conference on computer vision, 2017: 212-221.
[11] TANG B, LIU Z, TAN Y, et al. HRTransNet: HRFormer-driven two-modality salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 33(2): 728-742.
[12] WU J, SUN F, XU R, et al. Aggregate interactive learning for RGB-D salient object detection[J]. Expert Systems with Applications, 2022, 195: 116614.
[13] XIA C, DUAN S, FANG X, et al. EFGNet: encoder steered multi-modality feature guidance network for RGB-D salient object detection[J]. Digital Signal Processing, 2022, 131: 103775.
[14] LI G, LIU Z, CHEN M, et al. Hierarchical alternate interaction network for RGB-D salient object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 3528-3542.
[15] HUSSAIN T, ANWAR A, ANWAR S, et al. Pyramidal attention for saliency detection[J]. arXiv:2204.06788, 2022.
[16] SUN P, ZHANG W, LI S, et al. Learnable depth-sensitive attention for deep RGB-D saliency detection with multi-modal fusion architecture search[J]. International Journal of Computer Vision, 2022, 130(11): 2822-2841.
[17] CONG R, LIN Q, ZHANG C, et al. CIR-Net: cross-modality interaction and refinement for RGB-D salient object detection[J]. IEEE Transactions on Image Processing, 2022, 31: 6800-6815.
[18] JU R, GE L, GENG W, et al. Depth saliency based on anisotropic center-surround difference[C]//Proceedings of the 2014 IEEE International Conference on Image Processing, 2014: 1115-1119.
[19] NIU Y, GENG Y, LI X, et al. Leveraging stereopsis for saliency analysis[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012: 454-461.
[20] CHENG Y, FU H, WEI X, et al. Depth enhanced saliency detection method[C]//Proceedings of the International Conference on Internet Multimedia Computing and Service, 2014: 23-27.
[21] PENG H, LI B, XIONG W, et al. RGBD salient object detection: a benchmark and algorithms[C]//Proceedings of the European Conference on Computer Vision, 2014: 92-109.
[22] ZHAO J X, CAO Y, FAN D P, et al. Contrast prior and fluid pyramid integration for RGBD salient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3927-3936.
[23] PIAO Y, JI W, LI J, et al. Depth-induced multi-scale recurrent attention network for saliency detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 7254-7263.
[24] PANG Y, ZHANG L, ZHAO X, et al. Hierarchical dynamic filtering network for RGB-D salient object detection[C]//Proceedings of the European Conference on Computer Vision, 2020: 235-252.
[25] ZHANG J, FAN D P, DAI Y, et al. Uncertainty inspired RGB-D saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44: 5761-5779.
[26] FAN D P, LIN Z, ZHANG Z, et al. Rethinking RGB-D salient object detection: models, data sets, and large-scale benchmarks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(5): 2075-2089.
[27] JI W, LI J, ZHANG M, et al. Accurate RGB-D salient object detection via collaborative learning[C]//Proceedings of the European Conference on Computer Vision, 2020: 52-69.
[28] ZHOU W, ZHU Y, LEI J, et al. CCAFNet: crossflow and cross-scale adaptive fusion network for detecting salient objects in RGB-D images[J]. IEEE Transactions on Multimedia, 2021, 24: 2192-2204.
[29] SUN P, ZHANG W, WANG H, et al. Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 1407-1417.
[30] CHEN Q, LIU Z, ZHANG Y, et al. RGB-D salient object detection via 3D convolutional neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 1063-1071. |