[1] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 4489-4497.
[2] 韩文静, 罗晓曙, 杨日星. 一种复合型手势识别方法研究[J]. 计算机工程与应用, 2021, 57(4): 108-113.
HAN W J, LUO X S, YANG R X. Research on a compound gesture recognition method[J]. Computer Engineering and Applications, 2021, 57(4): 108-113.
[3] SHI L, ZHANG Y, CHENG J, et al. Skeleton-based action recognition with directed graph neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7912-7921.
[4] 谭立行, 鲁嘉淇, 张笑楠, 等. 基于轻量级OpenPose改进的幻影机手势交互系统[J]. 计算机工程与应用, 2021, 57(16): 159-166.
TAN L X, LU J Q, ZHANG X N, et al. Improved ghost machine gesture interaction system based on lightweight OpenPose[J]. Computer Engineering and Applications, 2021, 57(16): 159-166.
[5] CAI X, GUO T, WU X, et al. Gesture recognition method based on wireless data glove with sensors[J]. Sensor Letters, 2015, 13(2): 134-137.
[6] ZHANG T, LIN H, JU Z, et al. Hand gesture recognition in complex background based on convolutional pose machine and fuzzy Gaussian mixture models[J]. International Journal of Fuzzy Systems, 2020, 22(4): 1330-1341.
[7] HE J, ZHANG C, HE X, et al. Visual recognition of traffic police gestures with convolutional pose machine and handcrafted features[J]. Neurocomputing, 2020, 390: 248-259.
[8] KIM Y, MYUNG H. Gesture recognition with a skeleton-based keyframe selection module[J]. arXiv:2112.01736, 2021.
[9] 刘亮, 蒲浩洋. 基于 LSTM 的多维度特征手势实时识别[J]. 计算机科学, 2021, 48(8): 328-333.
LIU L, PU H Y. Real-time gesture recognition of multi-dimensional feature based on LSTM[J]. Computer Science, 2021, 48(8): 328-333.
[10] 侯莹莹, 李建军. 基于时空特征融合的动态手势识别[J]. 内蒙古科技大学学报, 2022, 41(2): 187-193.
HOU Y Y, LI J J. Dynamic gesture recognition based on spatio-temporal feature fusion[J]. Journal of Inner Mongolia University of Science and Technology, 2022, 41(2): 187-193.
[11] 崔虎, 黄仁婧, 陈青梅, 等. 基于异步多时域特征的动态手势识别方法[J]. 计算机工程与应用, 2022, 58(21): 163-171.
CUI H, HUANG R J, CHEN Q M, et al. Dynamic gesture recognition based on asynchronous multi time domain features[J]. Computer Engineering and Applications, 2022, 58(21): 163-171.
[12] LIU J, WANG Y, XIANG S, et al. HAN: an efficient hierarchical self-attention network for skeleton-based gesture recognition[J]. arXiv:2106.13391, 2021.
[13] SI C, CHEN W, WANG W, et al. An attention enhanced graph convolutional LSTM network for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1227-1236.
[14] 胡宗承, 周亚同, 史宝军, 等. 结合注意力机制与特征融合的静态手势识别算法[J]. 计算机工程, 2022, 48(4): 240-246.
HU Z C, ZHOU Y T, SHI B J, et al. Static gesture recognition algorithm combining attention mechanism and feature fusion[J]. Computer Engineering, 2022, 48(4): 240-246.
[15] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[16] YAO K, COHN T, VYLOMOVA K, et al. Depth-gated recurrent neural networks[J]. arXiv:1508.03790, 2015.
[17] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[18] PIGOU L, VAN DEN OORD A, DIELEMAN S, et al. Beyond temporal pooling: recurrence and temporal convolutions for gesture recognition in video[J]. International Journal of Computer Vision, 2018, 126(2): 430-439.
[19] 郭宗鑫. 基于深度学习的交警手势识别研究[D]. 银川: 宁夏大学, 2021.
GUO Z X. Traffic police gesture recognition based on deep learning[D]. Yinchuan: Ningxia University, 2021.
[20] HUANG G, YANG J, JING S. Moving trajectory based traffic police gesture recognition via time series classification[C]//Proceedings of the 2021 17th International Conference on Computational Intelligence and Security, 2021: 318-322.
[21] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708. |