Classification of Benign and Malignant Pulmonary Nodules by Multimodal Feature Fusion Network
YIN Zhixian, XIA Kewen, WU Panpan
1.School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
2.School of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
[1] ZHENG R,ZHANG S,ZENG H,et al.Cancer incidence and mortality in China,2016[J].Journal of the National Cancer Center,2022,2(1):1-9.
[2] SIEGEL R L,MILLER K D,FUCHS H E,et al.Cancer statistics,2022[J].CA:A Cancer Journal for Clinicians,2022,72(1):7-33.
[3] JACOBS C,RIKXOORT E V,TWELLMANN T,et al.Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images[J].Medical Image Analysis,2014,18(2):374-384.
[4] FARAG A A,ALI A,ELSHAZLY S,et al.Feature fusion for lung nodule classification[J].International Journal of Computer Assisted Radiology and Surgery,2017,12(10):1809-1818.
[5] LI X,LI B,TIAN L,et al.Automatic benign and malignant classification of pulmonary nodules in thoracic computed tomography based on random forests algorithm[J].IET Image Processing,2018,12(7):1253-1264.
[6] Vanbang L E,朱煜,郑兵兵,等.图像灰度密度分布计算模型及肺结节良恶性分类[J].计算机应用研究,2020,37(1):296-299.
VANBANG L E,ZHU Y,ZHENG B B,et al.Pulmonary nodule image grey density distribution feature extraction algorithm and adenocarcinoma benign/malignant classification[J].Application Research of Computers,2020,37(1):296-299.
[7] 朱英亮,仇旭阳,徐磊.基于改进ReliefF与k-means算法的良恶性肺结节分类模型[J].小型微型计算机系统,2021,42(3):566-571.
ZHU Y L,QIU X Y,XU L.Classification model of benign and malignant pulmonary nodules based on unbiased ReliefF and weighted k-means algorithm[J].Journal of Chinese Computer Systems,2021,42(3):566-571.
[8] ZHANG G,ZHU D,LIU X,et al.Multi-scale pulmonary nodule classification with deep feature fusion via residual network[J].Journal of Ambient Intelligence and Humanized Computing,2018:1-12.
[9] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),USA,2016.Hawaii:IEEE,2016:770-778.
[10] XIE Y,XIA Y,ZHANG J,et al.Transferable multi-model ensemble for benign-malignant lung nodule classification on chest CT[C]//Medical Image Computing and Computer-Assisted Intervention,Canada,2017.Switzerland:Springer,2017:656-664.
[11] XIE Y,XIA Y,ZHANG J,et al.Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT[J].IEEE Transactions on Medical Image,2019,38(4):991-1004.
[12] SAHU P,YU D,DASARI M,et al.A lightweight multi-section CNN for lung nodule classification and malignancy estimation[J].IEEE Journal of Biomedical and Health Informatics,2019,23(3):960-968.
[13] AL-SHABI M,LAN B L,CHAN W,et al.Lung nodule classification using deep local-global networks[J].International Journal of Computer Assisted Radiology and Surgery,2019,14:1815-1819.
[14] HUANG G,LIU Z,LAURENS V,et al.Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),USA,2017.Hawaii:IEEE,2017:2261-2269.
[15] ZHANG H,GOODFELLOW I,METAXAS D,et al.Self-attention generative adversarial networks[J].arXiv:1805. 08318,2018.
[16] WANG Y,ZHANG H,CHAE K J,et al.Novel convolutional neural network architecture for improved pulmonary nodule classification on computed tomography[J].Multidimensional Systems and Signal Processing,2020,31:1163-1183.
[17] 汤宁,卫泽良,张瑞,等.基于多尺度多模式图像的肺结节分类对比研究[J].计算机工程与应用,2020,56(3):165-175.
TANG N,WEI Z L,ZHANG R,et al.Comparative study on classification of pulmonary nodules based on multi-scale and multi-mode image[J].Computer Engineering and Applications,2020,56(3):165-175.
[18] 孙浩天,袁刚,杨杨,等.基于三维各向异性卷积的肺结节良恶性分类[J].计算机工程与应用,2021,57(10):133-138.
SUN H T,YUAN G,YANG Y,et al.3D anisotropic convolution based pulmonary nodule classification[J].Computer Engineering and Applications,2021,57(10):133-138.
[19] SHI F,CHEN B,CAO Q,et al.Semi-supervised deep transfer learning for benign-malignant diagnosis of pulmonary nodules in chest CT images[J].IEEE Transactions on Medical Imaging,2022,41(4):771-781.
[20] HOWARD A,SANDLER M,CHEN B,et al.Searching for MobileNetV3[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV),Korea (South),2019.Hawaii:IEEE,2019:1314-1324.
[21] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//European Conference on Computer Vision,Germany,2018.Switzerland:Springer,2018:3-19.
[22] ZHANG X,ZHOU X,LIN M,et al.ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,USA,2018.Hawaii:IEEE,2018:6848-6856.
[23] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention,Germany,2015.Switzerland:Springer,2015:234-241.
[24] ARMATO S G,MCLENNAN G,BIDAUT L,et al.The lung image database consortium(LIDC) and image database resource initiative(IDRI):a completed reference database of pulmonary nodules on CT scans[J].Medical Physics,2011,38(2):915-931.
[25] 吴保荣,强彦,王三虎,等.融合多维度卷积神经网络的肺结节分类方法[J].计算机工程与应用,2019,55(24):171-177.
WU B R,QIANG Y,WANG S H,et al.Fusing multi-dimensional convolution neural network for lung nodules classification[J].Computer Engineering and Applications,2019,55(24):171-177.
[26] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[J].International Journal of Computer Vision,2020,128(2):336-359.