Dense Pedestrian Detection Algorithm Based on Improved ResNet-CrowdDet
HAN Wenjing, HE Ning, LIU Shengjie, YU Haigang
1.College of Smart City, Beijing Union University, Beijing 100101, China
2.Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China
HAN Wenjing, HE Ning, LIU Shengjie, YU Haigang. Dense Pedestrian Detection Algorithm Based on Improved ResNet-CrowdDet[J]. Computer Engineering and Applications, 2023, 59(16): 196-204.
[1] GIZARSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587.
[2] GIRSHICK R.Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision,2015:1440-1448.
[3] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems,2015:91-99.
[4] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788.
[5] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:6517-6525.
[6] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018.
[7] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision,2016:21-37.
[8] CHI C,ZHANG S,XING J,et al.PedHunter:occlusion robust pedestrian detector in crowded scenes[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence,2020:10639-10646.
[9] ZHOU C,YUAN J.Bi-box regression for pedestrian detection and occlusion estimation[C]//Proceedings of the 15th European Conference on Computer Vision,2018:135-151.
[10] LIN C Y,XIE H X,ZHENG H.PedJointNet:joint head-shoulder and full body deep network for pedestrian detection[J].IEEE Access,2019,7:47687-47697.
[11] LIU S,HUANG D,WANG Y.Adaptive NMS:refining pedestrian detection in a crowd[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:6459-6468.
[12] ZHOU P,ZHOU C,PENG P,et al.Noh-NMS:improving pedestrian detection by nearby objects hallucination[C]//Proceedings of the 28th ACM International Conference on Multimedia,2020:1967-1975.
[13] WANG X,XIAO T,JIANG Y,et al.Repulsion loss:detecting pedestrians in a crowd[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:7774-7783.
[14] CHU X,ZHENG A,ZHANG X,et al.Detection in crowded scenes:one proposal,multiple predictions[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:12214-12223.
[15] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:770-778.
[16] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125.
[17] LI D,HU J,WANG C,et al.Involution:inverting the inherence of convolution for visual recognition[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:12321-12330.
[18] WU Y,CHEN Y,YUAN L,et al.Rethinking classification and localization for object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10186-10195.
[19] WANG X,GIRSHICK R,GUPTA A,et al.Non-local neural networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:7794-7803.
[20] ZHU L,SHE Q,LI D,et al.Unifying nonlocal blocks for neural networks[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision,2021:12292-12301.
[21] SHAO S,ZHAO Z,LI B,et al.CrowdHuman:a benchmark for detecting human in a crowd[J].arXiv:1805.00123,2018.
[22] PAPAGEORGIOU C,POGGIO T.A trainable system for object detection[J].International Journal of Computer Vision,2000,38(1):15-33.
[23] OJALA T,PIETIKAINEN M,MAENPAA T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.
[24] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[25] DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005:886-893.
[26] SUN K,XIAO B,LIU D,et al.Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:5693-5703.
[27] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[28] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision,2018:3-19.
[29] XIE S,GIRSHICK R,DOLLáR P,et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:1492-1500.
[30] ZHOU J,JAMPANI V,PI Z,et al.Decoupled dynamic filter networks[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:6647-6656.
[31] DAI J,QI H,XIONG Y,et al.Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,2017:764-773.
[32] LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:8759-8768.
[33] TAN M X,PANG R M.EfficientDet:scalable and efficient object detection[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition,2020:10781-10790.
[34] HUANG S,LU Z,CHENG R,et al.FaPN:feature-aligned pyramid network for dense image prediction[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision,2021:864-873.
[35] HE K,GKIOXARI G,DOLLáR P,et al.Mask R-CNN[C]//Proceedings of the 2021 IEEE International Conference on Computer Vision,2017:2961-2969.
[36] CAI Z,VASCONCELOS N,VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:6154-6162.
[37] JIANG B,LUO R,MAO J,et al.Acquisition of localization confidence for accurate object detection[C]//Proceedings of the 15th European Conference on Computer Vision,2018:784-799.
[38] ZHANG S,BENENSON R,SCHIELE B.CityPersons:a diverse dataset for pedestrian detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:3213-3221.
[39] GE Z,JIE Z,HUANG X,et al.PS-RCNN:detecting secondary human instances in a crowd via primary object suppression[C]//2020 IEEE International Conference on Multimedia and Expo,2020:1-6.
[40] RUKHOVICH D,SOFIIUK K,GALEEV D,et al.IterDet:iterative scheme for object detection in crowded environments[C]//Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition.Cham:Springer,2021:344-354.
[41] XU Z,LI B,YUAN Y,et al.Beta R-CNN:looking into pedestrian detection from another perspective[C]//Advances in Neural Information Processing Systems 33,2020:19953-19963.
[42] SHAO X,WANG Q,YANG W,et al.Multi-scale feature pyramid network:a heavily occluded pedestrian detection network based on ResNet[J].Sensors,2021,21(5):1820.