DAI Yurui, AN Junxiu, TAO Quanhui. Financial Time-Series Prediction by Fusing Dual-Pathway Attention with VT-LSTM[J]. Computer Engineering and Applications, 2023, 59(12): 157-165.
[1] RANGEL-GONZALEZ J A,FRAUSTO-SOLIS J,GONZáLEZ-
BARBOSA J J,et al.Comparative study of ARIMA methods for forecasting time series of the mexican stock exchange[J].Studies in Computational Intelligence,2018,749:475-485.
[2] CHEN Y,HAO Y.A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction[J].Expert Systems with Applications,2017,80:340-355.
[3] 孙笑笑,侯文杰,应钰柯,等.基于双层机器学习的业务流程剩余时间预测[J].计算机学报,2021,44(11):2283-2294.
SUN X X,HOU W J,YING Y K,et al.Business process remaining time prediction based on two-layer machine learning[J].Chinese Journal of Computers,2021,44(11):2283-2294.
[4] PRIETO A,PRIETO B,ORTIGOSA E M,et al.Neural networks:an overview of early research,current frameworks and new challenges[J].Neurocomputing,2016,214:242-268.
[5] CHONG E,HAN C,PARK F C.Deep learning networks for stock market analysis and prediction:methodology,data representations,and case studies[J].Expert Systems with Application,2017,83:187-205.
[6] 程艳,尧磊波,张光河,等.基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J].计算机研究与发展,2020,57(12):2583-2595.
CHENG Y,YAO L B,ZHANG G H,et al.Text sentiment orientation analysis of multi-channels CNN and BiGRU based on attention mechanism[J].Journal of Computer Research and Development,2020,57(12):2583-2595.
[7] 李卫疆,漆芳,余正涛.基于多通道特征和自注意力的情感分类方法[J].软件学报,2021,32(9):2783-2800.
LI W J,QI F,YU Z T.Sentiment classification method based on multi-channel features and self-attention[J].Journal of Software,2021,32(9):2783-2800.
[8] 赵红蕊,薛雷.基于LSTM-CNN-CBAM模型的股票预测研究[J].计算机工程与应用,2021,57(3):203-207.
ZHAO H R,XUE L.Research on stock forecasting based on LSTM-CNN-CBAM model[J].Computer Engineering and Applications,2021,57(3):203-207.
[9] LU W,LI J,WANG J,et al.A CNN-BiLSTM-AM method for stock price prediction[J].Neural Computing and Applications,2020:1-13.
[10] 李春,高飞,王会青.改进果蝇算法优化CIAO-LSTM网络的时序预测模型[J].计算机工程与应用,2020,56(11):129-134.
LI C,GAO F,WANG H Q.Improved fruit fly optimization algorithm for optimizing time series prediction model of CIAO-LSTM network[J].Computer Engineering and Applications,2020,56(11):129-134.
[11] 方义秋,卢壮,葛君伟.联合RMSE损失LSTM-CNN模型的股价预测[J].计算机工程与应用,2022,58(9):294-302.
FANG Y Q,LU Z,GE J W.Forecasting stock prices with combined RMSE loss LSTM-CNN model[J].Computer Engineering and Applications,2022,58(9):294-302.
[12] HU J,ZHENG W.Transformation-gated LSTM:efficient capture of short-term mutation dependencies for multivariate time series prediction tasks[C]//The International Joint Conference on Neural Networks,2019.
[13] LIU Y,GONG C,YANG L,et al.DSTP-RNN:a dual-stage two-phase attention-based recurrent neural networks for long-term and multivariate time series prediction[J].Expert Systems with Applications,2019.
[14] XIAO Y,YIN H,ZHANG Y,et al.A dual‐stage attention‐based Conv‐LSTM network for spatio‐temporal correlation and multivariate time series prediction[J].International Journal of Intelligent Systems,2021(11).
[15] 李梦莹,王晓东,阮书岚,等.基于双路注意力机制的学生成绩预测模型[J].计算机研究与发展,2020,57(8):1729-1740.
LI M Y,WANG X D,RUAN S L,et al.Student performance prediction model based on two-way attention mechanism[J].Journal of Computer Research and Development,2020,57(8):1729-1740.
[16] QIAO W,YANG Z.Forecast the electricity price of U.S.using a wavelet transform-based hybrid model[J].Energy,2020:116704.
[17] SHI G,QIN C,TAO J,et al.A VMD-EWT-LSTM-based multi-step prediction approach for shield tunneling machine cutterhead torque[J].Knowledge-Based Systems,2021,228:107213.
[18] 易靖韬,严欢.基于小波分解和ARIMA-GRU混合模型的外贸风险预测预警研究[J/OL].中国管理科学:1-11[2022-03-27].DOI:10.16381/j.cnki.issn1003-207x.2021.1174.
YI J T,YAN H.Early prediction and warning of international trade risks based on wavelet decompositionand ARIMA-GRU hybrid model[J].Chinese Journal of Management Science:1-11[2022-03-27].DOI:10.16381/j.cnki.issn1003-207x.2021.1174.
[19] ZHANG Y,CHEN B,PAN G,et al.A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting[J].Energy Conversion and Management,2019,195:180-197.
[20] WANG J,WANG Z,LI J,et al.Multilevel wavelet decomposition network for interpretable time series analysis[C]//Proceedings of the 24th ACM International Conference on Knowledge Discovery and Data Mining(KDD’18),2018:2437-2446.
[21] 万晨.基于深度学习的多变量时间序列预测算法与应用研究[D].南京:南京大学,2020.
WAN C.Research on deep learning based multi-varivate time series forecasting algorithms and application[D].Nanjing:Nanjing University,2020.
[22] 王艺霏,于雷,滕飞,等.基于长-短时序特征融合的资源负载预测模型[J].计算机应用,2022,42(5):1508-1515.
WANG Y F,YU L,TENG F,et al.Resource-load prediction model based on long-short time series feature fusion[J].Journal of Computer Applications,2022,42(5):1508-1515.
[23] HU J,ZHENG W.Multistage attention network for multivariate time series prediction[J].Neurocomputing,2020,383:122-137.
[24] HU J,LI B.A deep learning framework based on spatio-temporal attention mechanism for traffic prediction[C]//2020 IEEE 22nd International Conference on High Performance Computing and Communications;IEEE 18th International Conference on Smart City;IEEE 6th International Conference on Data Science and Systems(HPCC/SmartCity/DSS),2020.