Traffic Flow Forecasting Model for Improved Spatio-Temporal Transformer
GAO Rong, WAN Yiliang, SHAO Xiongkai, Wu Xinyun
1.School of Computer Science, Hubei University of Technology, Wuhan 430068, China
2.State Key Laboratory of New Computer Software Technology, Nanjing University, Nanjing 210093, China
[1] LI Y,YU R,SHAHABI C,et al.Diffusion convolutional recurrent neural network:data-driven traffic forecasting[C]//Proceedings of 6th International Conference on Learning Representations,Vancouver,BC,Canada,2018.
[2] WU Z H,PAN S R,LONG G D,et al.Graph WaveNet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence,2019:1907-1913.
[3] PARK C,LEE C,BAHNG H,et al.ST-GRAT:a novel spatio-temporal graph attention networks for accurately forecasting dynamically changing road speed[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management,2020.
[4] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st Advances in Neural Information Processing Systems,2017:5998-6008.
[5] ZHENG C P,FAN X L,WANG C,et al.GMAN:a graph multi-attention network for traffic prediction[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence,2020:1234-1241.
[6] ZENG Z,ZHAO W,QIAN P S,et al.Robust traffic prediction from spatial-temporal data based on conditional distribution learning[J].IEEE Transactions on Cybernetics,2021,52(12):13458-13471.
[7] YING C X,CAI T L,LUO S J,et al.Do transformers really perform badly for graph representation?[C]//Advances in Neural Information Processing Systems,2021.
[8] ZHOU H Y,ZHANG S H,PENG J Q,et al.Informer:beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence,Palo Alto,California USA,2021.
[9] 刘世泽,秦艳君,王晨星,等.基于深度残差长短记忆网络交通流量预测算法[J].计算机应用,2021,41(6):1566-1572.
LIU S Z,QIN Y J,WANG C X,et al.Traffic flow prediction algorithm based on deep residual long short-term memory network[J].Journal of Computer Applications,2021,41(6):1566-1572.
[10] WANG J,DENG W,GUO Y T.New bayesian combination method for short-term traffic flow forecasting[J].Transportation Research Part C Emerging Technologies,2014,43:79-94.
[11] WANG X Y,MA Y,WANG Y Q,et al.Traffic flow prediction via spatial temporal graph neural network[C]//Proceedings of 29th The Web Conference 2020:International World Wide Web Conference,2020:1082-1092.
[12] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1935-1980.
[13] CHO K,VAN MERRIENBOER B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing(EMNLP),2014.
[14] 陈丹蕾,陈红,任安虎.考虑时空影响下的图卷积网络短时交通流预测[J].计算机工程与应用,2021,57(13):269-275.
CHEN D L,CHEN H,REN A H.Short-time traffic flow prediction of graph convolutional network considering influence of space and time[J].Computer Engineering and Applications,2021,57(13):269-275.
[15] YU B,YIN H T,ZHU Z X.Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence,Stockholm,Sweden,2018:3634-3640.
[16] ZHANG Q,CHANG J L,MENG G F,et al.Spatio-Temporal graph structure learning for traffic forecasting[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence,2020:1177-1185.
[17] ZHAO L,SONG Y J,ZHANG C,et al.T-GCN:a temporal graph convolutional network for traffic prediction[J].IEEE Transactions on Intelligent Transportation Systems,2019,21(9):3848-3858.
[18] WU Z H,PAN S R,LONG G D,et al.Connecting the dots:multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2020.
[19] 张晓旭,马志强,刘志强,等.Transformer在语音识别任务中的研究现状与展望[J].计算机科学与探索,2021,15(9):1578-1594.
ZHANG X X,MA Z Q,LIU Z Q,et al.Research status and prospect of Transformer in speech recognition[J].Journal of Frontiers of Computer Science and Technology,2021,15(9):1578-1594.
[20] 高金金,李潞洋.一种改进的点云Transformer深度学习模型[J].中北大学学报:(自然科学版),2021,42(6):9-15.
GAO J J,LI L Y.Deep learning model based on improved point cloud Transformer[J].Journal of North University of China(Social Science Edition),2021,42(6):9-15.
[21] Veli?kovi? P,CUCURULL G,CASANOVA A,et al.Graph attention networks[C]//Proceedings of the International Conference on Learning Representations,Vancouver Convention Center,Vancouver,BC,Canada,2018.
[22] ZHANG J N,SHI X J,XIE J Y,et al.GaAN:gated attention networks for learning on large and spatiotemporal graphs[C]//Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence,2018.
[23] GUO S N,LIN Y F,FENG N.et al.Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence,2019:922-929.
[24] SONG C,LIN Y F,GUO S N,et al.Spatial-temporal synchronous graph convolutional networks:a new framework for spatial-temporal network data forecasting[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence,2020:914-921.
[25] YE J X,ZHAO J J,YE K J,et al.How to build a graph-based deep learning architecture in traffic domain:a survey[J].arXiv:2005.11692,2020.