Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (10): 13-26.DOI: 10.3778/j.issn.1002-8331.2110-0396
• Research Hotspots and Reviews • Previous Articles Next Articles
WANG Xinran, TIAN Qichuan, ZHANG Dong
Online:
2022-05-15
Published:
2022-05-15
王欣然,田启川,张东
WANG Xinran, TIAN Qichuan, ZHANG Dong. Review of Research on Face Mask Wearing Detection[J]. Computer Engineering and Applications, 2022, 58(10): 13-26.
王欣然, 田启川, 张东. 人脸口罩佩戴检测研究综述[J]. 计算机工程与应用, 2022, 58(10): 13-26.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2110-0396
[1] 中华预防医学会新型冠状病毒肺炎防控专家组.新型冠状病毒肺炎流行病学特征的最新认识[J].中国病毒病杂志,2020,10(2):86-92. Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine Association.An update on the epidemiological characteristics of novel coronavirus pneumonia(COVID-19)[J].Chinese Journal of Viral Diseases,2020,10(2):86-92. [2] GARG P S.Face mask detection system using deep learning[J].International Journal for Modern Trends in Science and Technology,2020,6(12):161-164. [3] 王远大.UCloud开放人脸口罩检测服务 借助AI算法加快疫情防控[J].通信世界,2020(5):33-34. WANG Y D.UCloud open face mask detection service uses AI algorithm to speed up epidemic prevention and control[J].Communications World,2020(5):33-34. [4] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25:26th Annual Conference on Neural Information Processing Systems,2012:1097-1105. [5] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409. 1556,2014. [6] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [7] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9. [8] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//32nd International Conference on Machine Learning,2015:448-456. [9] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the Inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:2818-2826. [10] MULLER R,KORNBLITH S,HINTON G.When does label smoothing help?[J].arXiv:1906.02629,2019. [11] SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,Inception-ResNet and the impact of residual connections on learning[C]//21st AAAI Conference on Artificial Intelligence,2017. [12] OUMINA A,EL MAKHFI N,HAMDI M.Control the COVID-19 pandemic:face mask detection using transfer learning[C]//2020 IEEE 2nd International Conference on Electronics,Control,Optimization and Computer Science,2020:1-5. [13] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017. [14] SANDLER M,HOWARD A,ZHU M,et al.MobileNetv2:inverted residuals and linear bottlenecks[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:4510-4520. [15] PLATT J C.Sequential minimal optimization:a fast algorithm for training support vector machines:MSR-TR-98-14[R].Microsoft Research,1998. [16] ABEYWICKRAMA T,CHEEMA M A,TANIAR D.K-nearest neighbors on road networks:a journey in experimentation and in-memory implementation[J].arXiv:1601.01549,2016. [17] LOEY M,MANOGARAN G,TAHA M H N,et al.A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic[J].Measurement,2021,167:108288. [18] DIETTERICH T G.Ensemble learning[J].The Handbook of Brain Theory and Neural Networks,2002,2(1):110-125. [19] 刘国明,江巨浪,查兵,等.基于深度神经网络的口罩佩戴检测[J].安庆师范大学学报(自然科学版),2021,27(2):54-58. LIU G M,JIANG J L,ZHA B,et al.Mask wearing detection based on deep neural network[J].Journal of Anqing Normal University(Natural Science Edition),2021,27(2):54-58. [20] GATHANI J,SHAH K.Detecting masked faces using region-based convolutional neural network[C]//2020 IEEE 15th International Conference on Industrial and Information Systems,2020:156-161. [21] 刘启刚,孙向阳,徐伟.针对实时场景的口罩检测模型设计[J].实验技术与管理,2021,38(8):76-81. LIU Q G,SUN X Y,XU W.Mask detection model design for real-time scene[J].Experimental Technology and Management,2021,38(8):76-81. [22] CHOWDARY G J,PUNN N S,SONBHADRA S K,et al.Face mask detection using transfer learning of Inceptionv3[C]//8th International Conference on Big Data Analytics.Cham:Springer,2020:81-90. [23] LIN M,CHEN Q,YAN S.Network in network[J].arXiv:1312.4400,2013. [24] HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].arXiv:1207.0580,2012. [25] 金映谷,张涛,杨亚宁,等.基于MobileNet V2的口罩佩戴识别研究[J].大连民族大学学报,2021,23(5):404-409. JIN Y G,ZHANG T,YANG Y N,et al.Mask wearing recognition based on MobileNet V2[J].Journal of Dalian Minzu University,2021,23(5):404-409. [26] ALAWI A E B,QASEM A M.Lightweight CNN-based models for masked face recognition[C]//2021 International Congress of Advanced Technology and Engineering,2021:1-5. [27] 许德刚,王露,李凡.深度学习的典型目标检测算法研究综述[J].计算机工程与应用,2021,57(8):10-25. XU D G,WANG L,LI F.Review of typical object detection algorithms for deep learning[J].Computer Engineering and Applications,2021,57(8):10-25. [28] 肖雨晴,杨慧敏.目标检测算法在交通场景中应用综述[J].计算机工程与应用,2021,57(6):30-41. XIAO Y Q,YANG H M.Research on application of object detection algorithm in traffic scene[J].Computer Engineering and Applications,2021,57(6):30-41. [29] 张开华,樊佳庆,刘青山.视觉目标跟踪十年研究进展[J].计算机科学,2021,48(3):40-49. ZHANG K H,FAN J Q,LIU Q S.Advances on visual object tracking in past decade[J].Computer Science,2021,48(3):40-49. [30] 胡正平,张乐,李淑芳,等.视频监控系统异常目标检测与定位综述[J].燕山大学学报,2019,43(1):1-12. HU Z P,ZHANG L,LI S F,et al.Research on abnormal target detection and location in video surveillance system[J].Journal of Yanshan University,2019,43(1):1-12. [31] 赵文清,孔子旭,周震东,等.增强小目标特征的航空遥感目标检测[J].中国图象图形学报,2021,26(3):644-653. ZHAO W Q,KONG Z X,ZHOU Z D,et al.Target detection algorithm of aerial remote sensing based on feature enhancement technology[J].Journal of Image and Graphics,2021,26(3):644-653. [32] 罗会兰,陈鸿坤.基于深度学习的目标检测研究综述[J].电子学报,2020,48(6):1230-1239. LUO H L,CHEN H K.Survey of object detection based on deep learning[J].Acta Electronica Sinica,2020,48(6):1230-1239. [33] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [34] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//14th European Conference on Computer Vision.Cham:Springer,2016:21-37. [35] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision,2017:2980-2988. [36] GIRSHICK R.Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision,2015:1440-1448. [37] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28:Annual Conference on Neural Information Processing Systems,2015:91-99. [38] SHYLAJA H N,LATHA H N,POORNIMA H N,et al.Detection and localization of mask occluded faces by transfer learning using Faster RCNN[C]//2021 International Conference on Innovative Computing & Communication,2021. [39] 任钰,刘全金,黄忠,等.基于Faster R-CNN与迁移学习的口罩佩戴检测算法[J].安庆师范大学学报(自然科学版),2021,27(4):25-30. REN Y,LIU Q J,HUANG Z,et al.Mask wearing detection algorithm based on Faster R-CNN and transfer learning[J].Journal of Anqing Normal University(Natural Science Edition),2021,27(4):25-30. [40] 李泽琛,李恒超,胡文帅,等.多尺度注意力学习的Faster R-CNN口罩人脸检测模型[J].西南交通大学学报,2021,56(5):1002-1010. LI Z C,LI H C,HU W S,et al.Masked face detection model based on multi-scale attention-driven Faster R-CNN[J].Journal of Southwest Jiaotong University,2021,56(5):1002-1010. [41] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//15th European Conference on Computer Vision.Cham:Springer,2018:3-19. [42] 万子伦,张彦波,王多峰,等.复杂环境下多任务识别的人脸口罩检测算法[J].微电子学与计算机,2021,38(10):21-27. WAN Z L,ZHANG Y B,WANG D F,et al.Face mask detection algorithm for multitask recognition in complex environment[J].Microelectronics & Computer,2021,38(10):21-27. [43] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018. [44] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [45] 王艺皓,丁洪伟,李波,等.复杂场景下基于改进YOLOv3的口罩佩戴检测算法[J].计算机工程,2020,46(11):12-22. WANG Y H,DING H W,LI B,et al.Mask wearing detection algorithm based on improved YOLOv3 in complex scenes[J].Computer Engineering,2020,46(11):12-22. [46] WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2020:390-391. [47] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [48] 曾成,蒋瑜,张尹人.基于改进YOLOv3的口罩佩戴检测方法[J].计算机工程与设计,2021,42(5):1455-1462. ZENG C,JIANG Y,ZHANG Y R.Improved YOLOv3 detection algorithm for mask wearing[J].Computer Engineering and Design,2021,42(5):1455-1462. [49] 张路达,邓超.多尺度融合的YOLOv3人群口罩佩戴检测方法[J].计算机工程与应用,2021,57(16):283-290. ZHANG L D,DENG C.Multi-scale fusion of YOLOv3 crowed mask wearing detection method[J].Computer Engineering and Applications,2021,57(16):283-290. [50] 孙世丹,郑佳春,赵世佳,等.基于YOLO改进算法的安全帽和口罩佩戴自动同时检测[J].集美大学学报(自然科学版),2021,26(4):379-384. SUN S D,ZHENG J C,ZHAO S J,et al.Safety helmet and mask wearing automatic simultaneous detection based on YOLO improved algorithm[J].Journal of Jimei University(Natural Science),2021,26(4):379-384. [51] 曹城硕,袁杰.基于YOLO-Mask算法的口罩佩戴检测方法[J].激光与光电子学进展,2021,58(8):211-218. CAO C S,YUAN J.Mask wearing detection method based on YOLO-Mask[J].Laser & Optoelectronics Progress,2021,58(8):211-218. [52] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141. [53] 程可欣,王玉德.基于改进YOLOv3的自然场景人员口罩佩戴检测算法[J].计算机系统应用,2021,30(2):231-236. CHENG K X,WANG Y D.Masks worn by people in natural scenes based on improved YOLOv3 detection algorithm[J].Computer?Systems?&?Applications,2021,30(2):231-236. [54] REZATOFIGHI H,TSOI N,GWAK J Y,et al.Generalized intersection over union:a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:658-666. [55] 管军霖,智鑫.基于YOLOv4卷积神经网络的口罩佩戴检测方法[J].现代信息科技,2020,4(11):9-12. GUAN J L,ZHI X.Mask wearing detection method based on YOLOv4 convolutional neural network[J].Modern Information Technology,2020,4(11):9-12. [56] 冉鹏飞.复杂光照下基于深度学习的佩戴口罩检测[J].自动化与仪表,2021,36(4):67-72. RAN P F.Mask wearing detection based on deep learning in complex illumination[J].Automation & Instrumentation,2021,36(4):67-72. [57] 谈世磊,别雄波,卢功林,等.基于YOLOv5网络模型的人员口罩佩戴实时检测[J].激光杂志,2021,42(2):147-150. TAN S L,BIE X B,LU G L,et al.Real-time detection for mask-wearing of personnel based on YOLOv5 network model[J].Laser Journal,2021,42(2):147-150. [58] 肖博健,万烂军,陈俊权.采用YOLOv5模型的口罩佩戴识别研究[J].福建电脑,2021,37(3):35-37. XIAO B J,WAN L J,CHEN J Q.Research on mask wearing recognition using YOLOv5 model[J].Journal of Fujian Computer,2021,37(3):35-37. [59] 叶子勋,张红英.YOLOv4口罩检测算法的轻量化改进[J].计算机工程与应用,2021,57(17):157-168. YE Z X,ZHANG H Y.Lightweight improvement of YOLOv4 mask detection algorithm[J].Computer Engineering and Applications,2021,57(17):157-168. [60] HOWARD A,SANDLER M,CHU G,et al.Searching for MobileNetv3[C]//2019 IEEE/CVF International Conference on Computer Vision,2019:1314-1324. [61] 罗禹杰,张剑,陈亮,等.基于自适应空间特征融合的轻量化目标检测算法设计[J].激光与光电子学进展,2022,59(4):310-320. LUO Y J,ZHANG J,CHEN L,et al.Design of lightweight target detection algorithm based on adaptive spatial feature fusion[J].Laser & Optoelectronics Progress,2022,59(4):310-320. [62] LIU S,HUANG D,WANG Y.Learning spatial fusion for single-shot object detection[J].arXiv:1911.09516,2019. [63] 丁培,阿里甫·库尔班,耿丽婷,等.自然环境下实时人脸口罩检测与规范佩戴识别[J].计算机工程与应用,2021,57(24):268-275. DING P,ALIFU K,GENG L T,et al.Real-time face mask detection and standard wearing recognition method in natural environment[J].Computer Engineering and Applications,2021,57(24):268-275. [64] 王兵,乐红霞,李文璟,等.改进YOLO轻量化网络的口罩检测算法[J].计算机工程与应用,2021,57(8):62-69. WANG B,LE H X,LI W J,et al.Mask detection algorithm based on improved YOLO lightweight network[J].Computer Engineering and Applications,2021,57(8):62-69. [65] 朱杰,王建立,王斌.基于YOLOv4-tiny改进的轻量级口罩检测算法[J].液晶与显示,2021,36(11):1525-1534. ZHU J,WANG J L,WANG B.Improved lightweight mask detection algorithm based on YOLOv4-tiny[J].Chinese Journal of Liquid Crystals and Displays,2021,36(11):1525-1534. [66] 叶茂,马杰,王倩,等.多尺度特征融合的轻量化口罩佩戴检测算法[J/OL].计算机工程(2021-10-15)[2021-11-13].https://doi.org/10.19678/j.issn.1000-3428.0062231. YE M,MA J,WANG Q,et al.Lightweight mask wearing detection algorithm with multi-scale feature fusion[J/OL].Computer Engineering(2021-10-15)[2021-11-13].https://doi.org/10.19678/j.issn.1000-3428.0062231. [67] 彭成,张乔虹,唐朝晖,等.基于YOLOv5增强模型的口罩佩戴检测方法研究[J/OL].计算机工程(2021-07-29)[2021-09-12].https://doi.org/10.19678/j.issn.1000-3428.0061502. PENG C,ZHANG Q H,TANG C H,et al.A face mask wearing detection method based on YOLOv5 enhancement model[J/OL].Computer Engineering(2021-07-29)[2021-09-12].https://doi.org/10.19678/j.issn.1000-3428.0061502. [68] LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125. [69] 李雨阳,沈记全,翟海霞,等.基于改进SSD的口罩佩戴检测算法[J/OL].计算机工程(2021-09-09)[2021-11-20].https://doi.org/10.19678/j.issn.1000-3428.0062150. LI Y Y,SHEN J Q,ZHAI H X,et al.Mask wearing detection algorithm based on improved SSD[J/OL].Computer Engineering(2021-09-09)[2021-11-20].https://doi.org/10. 19678/j.issn.1000-3428.0062150. [70] 阮士峰.基于改进SSD算法的行人佩戴口罩检测研究[J].科技经济导刊,2020,28(35):9-13. YUAN S F.Detection of pedestrian wearing masks based on improved SSD algorithm[J].Technology and Economic Guide,2020,28(35):9-13. [71] NAGRATH P,JAIN R,MADAN A,et al.SSDMNV2:a real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2[J].Sustainable Cities and Society,2021,66:102692. [72] 毛晓波,徐向阳,李楠,等.基于改进SSD和Jetson Nano的口罩佩戴检测门禁系统[J].郑州大学学报(工学版),2021,42(6):85-92. MAO X B,XU X Y,LI N,et al.Mask wearing detection algorithm based on improved SSD[J/OL].Journal of Zhengzhou University(Engineering Science),2021,42(6):85-92. [73] 邓黄潇.基于迁移学习与RetinaNet的口罩佩戴检测的方法[J].电子技术与软件工程,2020(5):209-211. DENG H X.Methods of mask wearing detection based on transfer learning with RetinaNet[J].Electronic Technology & Software Engineering,2020(5):209-211. [74] DENG J,GUO J,ZHOU Y,et al.RetinaFace:single-stage dense face localisation in the wild[J].arXiv:1905.00641,2019. [75] 牛作东,覃涛,李捍东,等.改进RetinaFace的自然场景口罩佩戴检测算法[J].计算机工程与应用,2020,56(12):1-7. NIU Z D,QIN T,LI H D,et al.Improved algorithm of RetinaFace for natural scene mask wear detection[J].Computer Engineering and Applications,2020,56(12):1-7. [76] JIANG M,FAN X,YAN H.Retina facemask:a face mask detector[J].arXiv:2005.03950,2020. [77] YANG S,LUO P,LOY C C,et al.Wider face:a face detection benchmark[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:5525-5533. [78] GE S,LI J,YE Q,et al.Detecting masked faces in the wild with LLE-CNNs[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:2682-2690. [79] WANG Z,WANG G,HUANG B,et al.Masked face recognition dataset and application[J].arXiv:2003.09093,2020. [80] CABANI A,HAMMOUDI K,BENHABILES H,et al.MaskedFace-Net a dataset of correctly/incorrectly masked face images in the context of COVID-19[J].Smart Health,2021,19:100144. [81] ZHU Z,HUANG G,DENG J,et al.WebFace260M:a benchmark unveiling the power of million-scale deep face recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:10492-10502. [82] HUANG G B,MATTAR M,BERG T,et al.Labeled faces in the wild:a database for studying face recognition in unconstrained environments[C]//Workshop on Faces in Real-Life Images:Detection,Alignment,and Recognition,2008. [83] 刘淇缘,卢树华,兰凌强.遮挡人脸检测方法研究进展[J].计算机工程与应用,2020,56(13):33-46. LIU Q Y,LU S H,LAN L Q.Research progress on occluded face detection methods[J].Computer Engineering and Applications,2020,56(13):33-46. [84] 聂永琦,曹慧,杨锋,等.深度学习在糖尿病视网膜病灶检测中的应用综述[J].计算机工程与应用,2021,57(20):25-41. NIE Y Q,CAO H,YANG F,et al.Review of application of deep learning in detection of diabetic retinal lesions[J].Computer Engineering and Applications,2021,57(20):25-41. [85] 许虞俊,李晨.基于YOLO优化的轻量级目标检测网络[J].计算机科学,2021,48(S2):265-269. XU Y J,LI C.Light-weight object detection network optimized based on YOLO family[J].Computer Science,2021,48(S2):265-269. [86] 徐遐龄,刘涛,田国辉,等.有遮挡环境下的人脸识别方法综述[J].计算机工程与应用,2021,57(17):46-60. XU X L,LIU T,TIAN G H,et al.Review of occlusion face recognition methods[J].Computer Engineering and Applications,2021,57(17):46-60. |
[1] | YANG Yongbo, LI Dong. Lightweight Helmet Wearing Detection Algorithm of Improved YOLOv5 [J]. Computer Engineering and Applications, 2022, 58(9): 201-207. |
[2] | SUN Liujie, ZHAO Jin, WANG Wenju, ZHANG Yusen. Multi-Scale Transformer Lidar Point Cloud 3D Object Detection [J]. Computer Engineering and Applications, 2022, 58(8): 136-146. |
[3] | WANG Hao, LEI Yinjie, CHEN Haonan. Real Time Traffic Sign Detection Algorithm Based on Improved YOLOV3 [J]. Computer Engineering and Applications, 2022, 58(8): 243-248. |
[4] | ZHAO Jielun, ZHANG Xingzhong, DONG Hongyue. Defect Detection in Transmission Line Based on Scale-Invariant Feature Pyramid Networks [J]. Computer Engineering and Applications, 2022, 58(8): 289-296. |
[5] | ZHOU Tianyu, ZHU Qibing, HUANG Min, XU Xiaoxiang. Defect Detection of Chip on Carrier Based on Lightweight Convolutional Neural Network [J]. Computer Engineering and Applications, 2022, 58(7): 213-219. |
[6] | YANG Jiayun, YAO Yinuo, YU Kun, LIU Xiumei, YU Minghe, ZHAO Zhibin. Research and Implementation of Semantic Constraint Verification Algorithm in Object Detection [J]. Computer Engineering and Applications, 2022, 58(7): 237-242. |
[7] | WANG Xinpeng, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, MENG Chuang, GAO Jing. Review on Improvement of Typical Object Detection Algorithms in Deep Learning [J]. Computer Engineering and Applications, 2022, 58(6): 42-57. |
[8] | LI Yanchen, ZHANG Xiaojun, ZHANG Minglu, SHEN Liangyi. Object Detection in Autonomous Driving Scene Based on Improved Efficientdet [J]. Computer Engineering and Applications, 2022, 58(6): 183-191. |
[9] | GUO Yuyang, HU Weichao, DAI Shuai, CHEN Yanyan. Lightweight Vehicle Detection Model for Roadside Traffic Monitoring Scenarios [J]. Computer Engineering and Applications, 2022, 58(6): 192-199. |
[10] | ZHANG Zhenwei, HAO Jianguo, HUANG Jian, PAN Chongyu. Review of Few-Shot Object Detection [J]. Computer Engineering and Applications, 2022, 58(5): 1-11. |
[11] | HUANG Guoxin, LI Wei, ZHANG Bihao, LIANG Binbin, HAN Xiaodong, GONG Jianglei, WU Changqing. Improved SSD-Based Multi-scale Object Detection Algorithm in Airport Surface [J]. Computer Engineering and Applications, 2022, 58(5): 264-270. |
[12] | YANG Qisheng, LI Wenkuan, YANG Xiaofeng, YUE Linxi, LI Haifang. Improved YOLOv5 Method for Detecting Growth Status of Apple Flowers [J]. Computer Engineering and Applications, 2022, 58(4): 237-246. |
[13] | GUAN Liwen, SUN Xinlei, YANG Pei. Grasping Detection Based on Key Point Estimation [J]. Computer Engineering and Applications, 2022, 58(4): 267-274. |
[14] | WANG Shengchun, CHEN Yang. Ground Nephogram Object Detection Algorithm Based on Improved Loss Function [J]. Computer Engineering and Applications, 2022, 58(2): 169-175. |
[15] | YUAN Guowen, ZHANG Caixia, YANG Yang, ZHANG Wensheng, BAI Jiangbo. SAR Target Detection Algorithm for Depth Representation in Complex Scenes [J]. Computer Engineering and Applications, 2022, 58(2): 289-294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||