BAI Ru, YU Hui, AN Jiancheng, CAO Rui. Mass Classification of Breast Mammogram Based on Improved DenseNet[J]. Computer Engineering and Applications, 2022, 58(15): 270-277.
[1] BRAY F,FERLAY J,SOERJOMATARAM I,et al.Global cancer statistics 2018:globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].Ca-a Cancer Journal for Clinicians,2018,68(6):394-424.
[2] 李贺,郑荣寿,张思维,等.2014年中国女性乳腺癌发病与死亡分析[J].中华肿瘤杂志,2018,40(3):166-171.
LI H,ZHENG R S,ZHANG S W,et al.Incidence and mortality of female breast cancer in China,2014[J].Chinese Journal of Oncology,2018,40(3):166-171.
[3] 陈万青,郑荣寿.中国女性乳腺癌发病死亡和生存状况[J].中国肿瘤临床,2015,42(13):668-674.
CHEN W Q,ZHENG R S.Incidence,mortality and survival analysis of breast cancer in China[J].Chinese Journal of Clinical Oncology,2015,42(13):668-674.
[4] 张巧丽,赵地,迟学斌.基于深度学习的医学影像诊断综述[J].计算机科学,2017,44(z2):1-7.
ZHANG Q L,ZHAO D,CHI X B.Review for deep learning based on medical imaging diagnosis[J].Computer Science,2017,44(z2):1-7.
[5] MURTAZA G,SHUIB L,WAHAB A W A,et al.Deep learning-based breast cancer classification through medical imaging modalities:state of the art and research challenges[J].Artificial Intelligence Review,2020,53(3):1655-1720.
[6] 海金金.基于CNN的乳腺癌钼靶影像病理学分级算法研究[D].郑州:战略支援部队信息工程大学,2018.
HAI J J.Research on automated breast cancer histopathological grading through digital mammograms based on CNN[D].Zhenzhou:PLA Strategic Support Force Information Engineering University,2018.
[7] VAN ZELST J C,TAN T,MANN R M,et al.Validation of radiologists’ findings by computer-aided detection(CAD) software in breast cancer detection with automated 3D breast ultrasound:a concept study in implementation of artificial intelligence software[J].Acta Radiologica,2020,61(3):312-320.
[8] TIAN C,XU Y,FEI L,et al.Deep learning for image denoising:a survey[C]//International Conference on Genetic & Evolutionary Computing,2018:563-572.
[9] 雒培磊,李国庆,曾怡.一种改进的基于深度学习的遥感影像拼接方法[J].计算机工程与应用,2017,53(20):180-186.
LUO P L,LI G Q,ZENG Y.Modified approach to remote sensing image mosaic based on deep learning[J].Computer Engineering and Applications,2017,53(20):180-186.
[10] 吴仁彪,赵婷,屈景怡.基于深度SE-DenseNet的航班延误预测模型[J].电子与信息学报,2019,41(6):1510-1517.
WU R B,ZHAO T,QU J Y.Flight delay prediction model based on deep SE-DenseNet[J].Journal of Electronics & Information Technology,2019,41(6):1510-1517.
[11] LEVY D,JAIN A.Breast mass classification from mammograms using deep convolutional neural networks[J].arXiv:1612.00542,2016.
[12] 孙利雷,徐勇.基于深度学习的乳腺X射线影像分类方法研究[J].计算机工程与应用,2018,54(21):13-19.
SUN L L,XU Y.Research on classification method of mammography based on deep learning[J].Computer Engineering and Applications,2018,54(21):13-19.
[13] 侯霄雄,许新征,朱炯,等.基于AlexNet和集成分类器的乳腺癌计算机辅助诊断方法[J].山东大学学报(工学版),2019,49(2):74-79.
HOU X,XU X,ZHU J,et al.Computer aided diagnosis method for breast cancer based on AlexNet and ensemble classifiers[J].Journal of Shandong University(Engineering Science),2019,49(2):74-79.
[14] VANG Y S,CHEN Z,XIE X,et al.Deep learning framework for multi-class breast cancer histology image classification[C]//International Conference on Image Analysis & Recognition,2018:914-922.
[15] ABDEL RAHMAN A S,BELHAOUARI S B,BOUZERDOUM A,et al.Breast mass tumor classification using deep learning[C]//2020 IEEE International Conference on Informatics,IoT,& Enabling Technologies(ICIoT),2020:271-276.
[16] ERTOSUN M G,RUBIN D L.Probabilistic visual search for masses within mammography images using deep learning[C]//2015 IEEE International Conference on Bioinformatics and Biomedicine,2015:1310-1315.
[17] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//2017 IEEE Comference on Computer Vision and Pattern Recognition,2017:2261-2269.
[18] LI H,ZHUANG S,LI D,et al.Benign and malignant classification of mammogram images based on deep learning[J].Biomedical Signal Processing & Control,2019,51:347-354.
[19] DAS K,CONJETI S,ROY A G,et al.Multiple instance learning of deep convolutional neural networks for breast histopathology whole slide classification[C]//International Symposium on Biomedical Imaging,2018:578-581.
[20] HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2020,42(8):2011-2023.
[21] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[J].arXiv:1502.03167,2015.
[22] GLOROT X,BORDES A,BENGIO Y.Deep sparse rectifier neural networks[C]//International Conference on Artificial Intelligence and Statistics,2011:315-323.
[23] HEATH M,BOWYER K,KOPANS D,et al.The digital database for screening mammography[C]//5th International Workshop on Digital Mammography,2001.
[24] LEE R S,GIMENEZ F,HOOGI A,et al.A curated mammography data set for use in computer-aided detection and diagnosis research[J].Scientific Data,2017,4(1):170177.