Network User Analysis Based on Improved Density Peak Clustering Algorithm
LYU Yi, LIU Mandan
Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200030, China
LYU Yi, LIU Mandan. Network User Analysis Based on Improved Density Peak Clustering Algorithm[J]. Computer Engineering and Applications, 2022, 58(17): 314-324.
[1] 吴洁.基于无线路由器日志的用户行为模式分析[D].西安:长安大学,2019.
WU J.Analysis of user behavior patterns based on wireless router logs[D].Xi’an:Chang’an University,2019.
[2] 吴笛,杜云艳,易嘉伟,等.基于密度的轨迹时空聚类分析[J].地球信息科学学报,2015,17(10):1162-1171.
WU D,DU Y Y,YI J W,et al.Density-based spatiotemporal clustering analysis of trajectories[J].Journal of Geoinformation Science,2015,17(10):1162-1171.
[3] 穆桃,陈伟,陈松健.基于多层网络流量分析的用户分类方法[J].计算机应用,2017,37(3):705-710.
MU T,CHEN W,CHEN S J.User classification method based on multiple-layer network traffic analysis[J].Journal of Computer Applications,2017,37(3):705-710.
[4] 李旭.基于聚类技术的校园网络用户行为数据分析研究[D].济南:山东师范大学,2016.
LI X.Research on data analysis of campus network user behavior based on clustering technology[D].Jinan:Shandong Normal University,2016.
[5] FUCHS J,ISENBERG P,BEZERIANOS A,et al.Teaching clustering algorithms with educlust:experience report and future directions[J].IEEE Computer Graphics and Applications,2020,40(2):98-102.
[6] 王国琼.大数据可视化对某高校学生行为分析的呈现[D].济南:山东大学,2016.
WANG G Q.Presentation of big data visualization to the analysis of student behavior in a university[D].Jinan:Shandong University,2016.
[7] 姜妍.聚类算法在校园无线网用户行为分析中的应用研究[D].天津:天津理工大学,2018.
JIANG Y.Research on the application of clustering algorithm in the user behavior analysis of campus wireless network[D].Tianjin:Tianjin University of Technology,2018.
[8] LIU R,WANG H,YU X.Shared-nearest-neighbor-based clustering by fast search and find of density peaks[J].Information Sciences,2018,450:200-226.
[9] RODRIGUEZ A,LAIO A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492-1496.
[10] 方敏佳,刘漫丹.基于校园无线网络的时空轨迹相似性度量[J].计算机工程与设计,2020,41(11):3001-3008.
FANG M J,LIU M D.Analysis of users’ spatial-temporal trajectory based on campus wireless network[J].Computer Engineering and Design,2020,41(11):3001-3008.
[11] RAFIEI D,MENDELZON A.Efficient retrieval of similar time sequences using DFT[C]//5th International Conference of Foundations of Data Organization,1998:249-257.
[12] VLACHOS M,KOLLIOS G,GUNOPULOS D.Discovering similar multidimensional trajectories[C]//18th International Conference on Data Engineering,2002:673-684.
[13] KANTARDZIC M.Data mining:concepts,models,methods,and algorithms[M].2nd ed.New York:John Wiley & Sons,2011.
[14] BREUNIG M M,KRIEGEL H P,NG R T,et al.LOF:identifying density-based local outliers[C]//2000 ACM SIGMOD International Conference on Management of Data,2000:93-104.
[15] 吴俊.基于DBSCAN和LOF的网络入侵异常检测算法优化研究[D].福州:福州大学,2017.
WU J.The optimization research on network intrusion anomaly detection algorithm based on DBSCAN and LOF[D].Fuzhou:Fuzhou University,2017.
[16] DUNN J C J J O C.Well-separated clusters and optimal fuzzy partitions[J].Journal of Cybernetics,1974,4(1):95-104.
[17] ROUSSEEUW P.Silhouettes:a graphical aid to the interpretation and validation of cluster analysis[J].Journal of Computational and Applied Mathematics,1987,20(1):53-65.
[18] FAHAD A,ALSHATRI N,TARI Z,et al.A survey of clustering algorithms for big data:taxonomy and empirical analysis[J].IEEE Transactions on Emerging Topics in Computing,2014,2(3):267-279.
[19] DAVIES D L,BOULDIN D W J I T O P A,INTELLIGENCE M.A cluster separation measure[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,1(2):224-227.
[20] CALI?SKI T,HARABASZ J J C I S.A dendrite method for cluster analysis[J].Communications in Statistics-Theory and Methods,1974,3(1):1-27.