FU Kui, LU Dong, QIN Guishuang. Topic Research of Financial Text Based on SGC-LDA Model[J]. Computer Engineering and Applications, 2022, 58(15): 285-293.
[1] 彭燕,刘宇红,张荣芬.基于LSTM的股票价格预测建模与分析[J].计算机工程与应用,2019,55(11):209-212.
PENG Y,LIU Y H,ZHANG R F.Modeling and analysis of stock price forecast based on LSTM[J].Computer Engineering and Applications,2019,55(11):209-212.
[2] BAKER S R,BLOOM N,DAVIS S J,et al.Measuring economic policy uncertainty[J].Quarterly Journal of Economics,2016,21(10):141-217.
[3] THORSRUD L A.Words are the new numbers:a newsy coincident index of the business cycle[J].Journal of Business & Economic Statistics,2020,38(2):393-409.
[4] 陈海文,蔡志平,方峰.应用财经新闻挖掘的金融品种价格走势预测[J].计算机工程与科学,2016,38(9):1909-1916.
CHEN H W,CAI Z P,FANG F.Financial price trend forecast using financial news mining[J].Computer Engineering & Science,2016,38(9):1909-1916.
[5] 龙文,毛元丰,管利静,等.财经新闻的话题会影响股票收益率吗?——基于行业板块的研究[J].管理评论,2019,31(5):18-27.
LONG W,MAO Y F,GUAN L J,et al.Can topics in financial news impact the return of stock market—a research based on market segmentt[J].Management Review,2019,31(5):18-27.
[6] SHIROTA Y,HASHIMOTO T,SAKURA T.Extraction of the financial policy topics by latent dirichlet allocation[C]//Tencon IEEE Region 10 Conference,2015.
[7] GERARD H,PHILLIPS G M.Text-based network industries and endogenous product differentiation[J].Journal of Political Economy,2016,124(5):1423-1465.
[8] 王丽苗,许青林,姜文超,等.集成FM的短视频喜好率预测模型[J].计算机工程与应用,2020,56(14):118-122.
WANG L M,XU Q L,JIANG W C,et al.Short video preference rate prediction model with integrated FM[J].Computer Engineering and Applications,2020,56(14):118-122.
[9] 石善冲,朱颖楠,赵志刚,等.基于微信文本挖掘的投资者情绪与股票市场表现[J].系统工程理论与实践,2018,38(6):1404-1412.
SHI S C,ZHU Y N,ZHAO Z G,et al.The investor sentiment mined from WeChat text and stock market performance[J].Systems Engineering-Theory & Practice,2018,38(6):1404-1412.
[10] BLEI D M,LAFFERTY J D.Correlated topic models[C]//Proceedings of the 18th International Conference on Neural Information Processing Systems,Vancouver,British Columbia,2005.
[11] ROSEN-ZVI M,GRIFFITHS T,STEYVERS M,et al.The author-topic model for authors and documents[C]//Twentieth Conference on Uncertainty in Artificial Intelligence(UAI-2004),2004:487-494.
[12] LI W,MCCALLUM A.Pachinko allocation:DAG-strutured mixture models of topic correlations[C]//Proceedings of the Twenty-Third International Conference on Machine Learning(ICML 2006),Pittsburgh,Pennsylvania,USA,June 25-29,2006.
[13] 王振飞,刘凯莉,郑志蕴,等.面向时间序列的微博话题演化模型研究[J].计算机科学,2017,44(8):270-273.
WANG Z F,LIU K L,ZHENG Z Y,et al.Research on evolution of microblog topic based on time sequence[J].Computer Science,2017,44(8):270-273.
[14] WANG Y,AGICHTEIN E,BENZI M,et al.TM-LDA:efficient online modeling of latent topic transitions in social media[C]//Proceedings of the ACMSIGKDD International Conference on Knowledge Discovery and Data Mining,2012:124-125.
[15] BLEI D.Probabilistic topic models[C]//ACM SIGKDD International Conference Tutorials,2011.
[16] DEERWESTER S.Indexing by latent semantic analysis[J].Journal of the Association for Information Science and Technology,1990,41(6):391-407.
[17] 邹丽雪,王丽,刘细文.利用引文构建的主题模型研究进展[J].图书情报工作,2019,63(23):131-138.
ZHOU L X,WANG L,LIU X W.Research advance of citation based on topic models[J].Library and Information Service,2019,63(23):131-138.
[18] 谭春辉,熊梦媛.基于LDA模型的国内外数据挖掘研究热点主题演化对比分析[J].情报科学,2021,39(4):174-185.
TAN C H,XIONG M Y.Contrastive analysis at home and abroad on the evolution of hot topics in the field of data mining based on LDA model[J].Information Science,2021,39(4):174-185.
[19] ZHOU Y,WRIGHT J,MASKELL S,et al.A generic anomaly detection approach applied to mixture-of-unigrams and maritime surveillance data[J].2019 Symposium on Sensor Data Fusion:Trends,Solutions,Applications,2019.
[20] 李大为,王京春,赵兵兵.基于Alexa的网站特点及性能分析[J].计算机与网络,2018,44(18):69-71.
LI D W,WANG J C,ZHAO B B.Analysis on characteristics and performance of website based on Alexa[J].Computer & Network,2018,44(18):69-71.
[21] LANGVILLE A,MEYER C.网页排名PR值及其他[M].北京:机械工业出版社,2014.
LANGVILLE A,MEYER C.PageRank,PR,and others[M].Beijing:Machinery Industry Press,2014.