Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (26): 40-42.DOI: 10.3778/j.issn.1002-8331.2010.26.014

• 研究、探讨 • Previous Articles     Next Articles

Theory of a-truth degrees in Lukasiewicz interval-valued propositional logic system

XUE Zhan-ao,WEI Li-ping,CEN Feng,LI Xia   

  1. College of Computer and Information Technology,Henan Normal University,Xinxiang,Henan 453007,China

  • Received:2009-03-11 Revised:2009-05-04 Online:2010-09-11 Published:2010-09-11
  • Contact: XUE Zhan-ao

Lukasiewicz区间值命题逻辑的a-真度理论

薛占熬,卫利萍,岑 枫,李 霞   

  1. 河南师范大学 计算机与信息技术学院,河南 新乡 453007
  • 通讯作者: 薛占熬

Abstract: Some basic concepts of the interval-valued propositional logic system are introduced.The probability measure and the probability space are expanded to the interval-valued.On this basis,the finite interval-valued measure is defined,and the concept of the infinite product is given on the interval-valued probability space.The concept of the [a]-truth degrees is introduced in the Lukasiewicz interval-valued propositional logic system,interval-valued truth degree reasoning rules are discussed,and its properties are proved.

Key words: a-truth degrees, Lukasiewicz interval-valued propositional logic system, interval-valued probability space, interval-valued truth degree reasoning rules

摘要: 首先给出了区间值命题逻辑的基本概念,把概率测度和概率空间的概念拓展到区间值上,在此基础上定义了有限值区间逻辑测度,给出基于区间值概率空间的无穷乘积概念。在Lukasiewicz区间值命题逻辑中,引入命题的a-真度概念,证明了区间值真度推理规则,讨论了其性质。

关键词: a-真度, Lukasiewicz区间值命题逻辑, 区间值概率空间, 区间值真度推理规则

CLC Number: