Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (21): 14-16.DOI: 10.3778/j.issn.1002-8331.2010.21.004

• 博士论坛 • Previous Articles     Next Articles

Matriculate probability model of national college entrance examination

LU Chang-hui1,LUO Yong2,HUANG Quan1,3,LIU Qing-bao1,DENG Su1   

  1. 1.Key Lab of Science and Technology for National Defense of C4ISR Technology,National University of Defense Technology,Changsha 410073,China
    2.College of Science,National University of Defense Technology,Changsha 410073,China
    3.Hunan Examination Center of Education,Changsha 410001,China
  • Received:2010-03-10 Revised:2010-05-24 Online:2010-07-21 Published:2010-07-21
  • Contact: LU Chang-hui

高考志愿录取概率模型研究

陆昌辉1,罗 永2,黄 权1,3,刘青宝1,邓 苏1   

  1. 1.国防科技大学 C4ISR技术国防科技重点实验室,长沙 410073
    2.国防科技大学 理学院,长沙 410073
    3.湖南省教育考试院,长沙 410001
  • 通讯作者: 陆昌辉

Abstract: In educational system,the national college entrance examination is one of the best important examinations until today.It affects the benefits of thousands of students.During the entrance examination,choosing fit volent is a very important step.This paper introduces a probability model to describe the situation of a student passing the entrance examination.It analyzes the distribution of the scores of matriculates in every college first,and then discusses the standardization method of the examinees’ scores,and deals with the history data through it.Afterwards,the matrix is introduced to store the history data,and how to compute the matriculate probabilities is described.At last,the real matriculate data of Hunan province in 2008 is used to check this model,and the result of this experiment shows the model is rational and feasible.

Key words: national college entrance examination, volent, matriculate probability, model

摘要: 高考是目前我国教育体制中最重要的考试之一,它关系到千万考生的切身利益,而志愿填报是其中的一个重要环节。采用概率模型的形式来描述高考志愿的录取情况,首先分析了各所高校录取分数的分布情况;接着探讨了考生成绩的标准化问题,在此基础上对历史数据进行了处理;然后提出了用矩阵的形式来存储历史数据,并给出了录取概率的计算方法;最后用湖南省2008年度的录取真实数据对模型进行了检验,实验结果表明该模型是合理的和可行的。

关键词: 高考, 志愿, 录取概率, 模型

CLC Number: