Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (20): 241-244.DOI: 10.3778/j.issn.1002-8331.2010.20.066

• 工程与应用 • Previous Articles     Next Articles

Knowledge discovery for a kind of association rules of temporal approximate periodicity

JIANG Hua1,MENG Zhi-qing2,ZHOU Ke-jiang1,XIAO Jian-hua1,HUANG Yue1   

  1. 1.Department of Information & Technology,Hunan First Normal College,Changsha 410205,China
    2.College of Business and Administration,Zhejiang University of Technology,Hangzhou 310023,China
  • Received:2008-12-01 Revised:2009-02-02 Online:2010-07-11 Published:2010-07-11
  • Contact: JIANG Hua

一类时态近似周期关联规则的知识发现问题

姜 华1,孟志青2,周克江1,肖建华1,黄 悦1   

  1. 1.湖南第一师范学院 信息技术系,长沙 410205
    2.浙江工业大学 经贸管理学院,杭州 310023
  • 通讯作者: 姜 华

Abstract: This paper discusses a kind of association rules of temporal approximate periodicity based on temporal constraint.First it presents an association rules of the approximate periodicity pattern.Then,it discusses an algorithm based on self-organizing map to find approximate periodic association rules.Experiment results show that proposed algorithms are efficient.

Key words: data mining, self-organizing map, approximate periodicity, temporal association rules

摘要: 研究一类基于时态约束的属性状态之间存在关联的近似周期知识发现问题。首先构造了时态近似周期关联规则模型,然后提出了一个基于SOM(自组织特征映射网络)聚类来寻找近似周期关联规则的算法,对十多年来的股票数据和高频股票数据分别进行了一些实验,实验表明该算法是有效的。

关键词: 数据挖掘, 自组织映射, 近似周期, 关联规则

CLC Number: