Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (19): 220-223.DOI: 10.3778/j.issn.1002-8331.2010.19.064

• 工程与应用 • Previous Articles     Next Articles

Hybrid algorithm for traffic flow breakdown identification

ZHANG Jing-lei,WANG Xiao-yuan   

  1. School of Transportation and Vehicle Engineering,Shandong University of Technology,Zibo,Shandong 255091,China
  • Received:2009-03-17 Revised:2009-05-18 Online:2010-07-01 Published:2010-07-01
  • Contact: ZHANG Jing-lei

交通流突变辨识组合算法

张敬磊,王晓原   

  1. 山东理工大学交通与车辆工程学院,山东淄博255091
  • 通讯作者: 张敬磊

Abstract: Aiming at developing intelligent transportation system,a hybrid algorithm for traffic flow breakdown identification
based on fast Mallat algorithm and RBF network is presented utilizing the characteristic of traffic flow.Utilizing the association
between the wavelet coefficients and traffic flow,the set of approximate coefficients and detail coefficients of wavelet
decomposition from traffic flow parameters is regarded as the input of the Radial Basis Funtion(RBF) network.And the
state of traffic flow breakdown can be extracted from the RBF network.Traffic flow breakdown usually results from traffic
incidents,a performance test is carried out using data obtained from the simulation under the condition of incident and
non-incident.According to the results of test compared with other algorithms,the hybrid algorithm performs better than the
other algorithms in traffic flow breakdown identification.

摘要: 针对智能交通系统的开发,结合交通流特性,应用小波多分辨分析理论的Mallat 分解算法与RBF 神经网络建立交通流状态辨识组合算法。利用多种小波系数与交通流参数之间的相应变化规律进行RBF 网络输入参数设计,进而通过RBF 网络进行交通流状态突变的辨识。交通流状态的突变多与交通事件直接相关,故采用事件和非事件条件下的模拟数据对算法进行了离线测试。与传统算法的性能比较结果表明:组合算法在交通流状态突变辨识方面具有良好的性能。

CLC Number: