Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (18): 196-198.DOI: 10.3778/j.issn.1002-8331.2010.18.061

• 工程与应用 • Previous Articles     Next Articles

Modified SIFT for localization of omnidirectional vision robot

XIA Gui-hua,WANG Bo,ZHU Qi-dan   

  1. College of Automation,Harbin Engineering University,Harbin 150001,China
  • Received:2009-03-03 Revised:2009-05-11 Online:2010-06-21 Published:2010-06-21
  • Contact: XIA Gui-hua

改进SIFT用于全景视觉移动机器人定位

夏桂华,王 博,朱齐丹   

  1. 哈尔滨工程大学 自动化学院,哈尔滨 150001
  • 通讯作者: 夏桂华

Abstract: Huge time are needed in feature extraction and matching with classical SIFT in image matching as well as in image retrieval,and a real-time system can not be built when mobile robot located itself with classical SIFT.A modified SIFT is proposed by changing the cycle sequence of sample pickup and setting two different modes on feature pickup.This modified SIFT can be used in omnidirectional vison images.Invariances to image translation,scaling,rotation are kept.A new real-time location system is built with modified SIFT.Examples are presented that this modified SIFT algorithm can realize the localization effectively and stably.

Key words: Scale Invariant Feature Transform(SIFT), feature extraction, image matching, omnidirectional vision, localization

摘要: 经典SIFT算法的计算量比较巨大,在应用到图像匹配中,尤其是多地图检索的图像匹配定位中时不能满足系统实时性的要求。可用于全景视觉传感器图像的改进SIFT算法,在不改变原算法匹配稳定性的基础上,通过修改原算法的采样规则,同时针对对复杂和简单两种情况下的图像采用不同的采样方式,使系统基本可以达到实时的效果。结果表明,改进算法可以实现高效、准确的定位。

关键词: 尺度不变特征变换, 特征提取, 图像匹配, 全景视觉, 定位

CLC Number: