Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (17): 41-44.DOI: 10.3778/j.issn.1002-8331.2010.17.012

• 研究、探讨 • Previous Articles     Next Articles

New selective ensemble learning method for decision tree

ZHANG Yan-ping1,CAO Zhen-tian1,ZHAO Shu1,ZHENG Yao-jun2,DU Ling1,DOU Rong-rong1   

  1. 1.MOE Key Lab of Intelligent Computing & Signal Processing,Anhui University,Hefei 230039,China
    2.Datang Generating Corporation in Guizhou,Guiyang 550002,China
  • Received:2008-12-18 Revised:2009-02-24 Online:2010-06-11 Published:2010-06-11
  • Contact: ZHANG Yan-ping

一种新的决策树选择性集成学习方法

张燕平1,曹振田1,赵 姝1,郑尧军2,杜 玲1,窦蓉蓉1   

  1. 1.安徽大学 智能计算与信号处理教育部重点实验室,合肥 230039
    2.大唐贵州发电有限公司,贵阳 550002
  • 通讯作者: 张燕平

Abstract: Diversity among the individual learners is deemed to be a key issue in ensemble learning.Popular ensemble learning algorithms such that Bagging adopts re-sampling technology to produce the diversity of the individual learners.Selective ensemble chooses individual learners which are a part of the original learners to ensemble.The result shows that it is better than the original ensemble.However,how to choose learners is a problem.Using Q statistic to measure the diversity of a pair of learners,a new selective ensemble learning method for decision tree is proposed.Compared with the C4.5 and Bagging method,it works better.

Key words: ensemble learning, selective ensemble, Q statistic

摘要: 个体学习器的差异度是集成学习中的关键因素。流行的集成学习算法如Bagging通过重取样技术产生个体学习器的差异度。选择性集成从集成学习算法产生的个体学习器中选择一部分来集成,结果表明比原集成更好。但如何选择学习器是个难题。使用Q统计量度量两个学习器的差异度,提出一种新的决策树选择性集成学习方法。与C4.5,Bagging方法相比,表现出很好的效果。

关键词: 集成学习, 选择性集成, Q统计量

CLC Number: