Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (11): 217-219.DOI: 10.3778/j.issn.1002-8331.2010.11.066

• 工程与应用 • Previous Articles     Next Articles

Vehicle video classification system based on SVM and data fusion

ZHANG Hui-min1,2,BAN Xiao-juan2,MENG Yu2,SHI Shan-song2   

  1. 1.Postal Savings Bank of China,Beijing 100808,China
    2.University of Science and Technology Beijing,Beijing 100083,China
  • Received:2008-10-09 Revised:2009-03-05 Online:2010-04-11 Published:2010-04-11
  • Contact: ZHANG Hui-min

基于SVM与数据融合的车辆视频分类系统

张慧敏1,2,班晓娟2,孟 宇2,石山松2   

  1. 1.中国邮政储蓄银行有限责任公司,北京 100808
    2.北京科技大学,北京 100083
  • 通讯作者: 张慧敏

Abstract: Research shows that a major factor that influences vehicle classification system based on video accuracy rate is the accurate of the vehicle parameters.According to this situation,this paper presents a method based on multi-source data fusion to detract vehicles’ shape parameters and uses Support Vector Machine(SVM) to class vehicles.The experimental results indicate that multi-source data fusion method can control noise disturbance in collecting procedure and the errors caused by camera lens distortion effectively and increase the inaccuracy of the vehicle shape parameters.Using support machine to class vehicles can overcome the problem of local extreme values unavoidably in neural network.The suggested method can increase the accuracy of vehicles classification and has a strong timeliness,be suitable for the real-time vehicle classification system.

Key words: video, vehicle classification, Support Vector Machine(SVM), data fusion

摘要: 影响基于视频检测的车型分类系统准确率的一个主要因素是采集的车辆外型参数的准确性。针对这种情况,提出了基于多源数据融合的方法提取车辆的外型参数,并使用SVM(支持向量机)对车辆进行分类。实验结果表明,多源数据融合的方法能够有效控制在采集过程中产生的噪音干扰和镜头畸变引起的误差,提高车型参数的准确性。使用支持向量机分类能够克服神经网络中无法避免的局部极值问题。该方法能够提高车型分类准确率,实时性强,适用于实时车型分类系统。

关键词: 视频, 车型分类, 支持向量机, 数据融合

CLC Number: