Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (11): 148-150.DOI: 10.3778/j.issn.1002-8331.2010.11.045

• 图形、图像、模式识别 • Previous Articles     Next Articles

Research on feature extraction method based on clustering and PCA fusion

ZHANG Yong,CHEN Li   

  1. School of Information Science and Technology,Northwest University,Xi’an 710127,China
  • Received:2008-10-07 Revised:2008-12-24 Online:2010-04-11 Published:2010-04-11
  • Contact: ZHANG Yong

聚类与PCA融合的特征提取方法研究

张 勇,陈 莉   

  1. 西北大学 信息科学与技术学院,西安 710127
  • 通讯作者: 张 勇

Abstract: In allusion to the limitation of Principal Component Analysis (PCA) in solving the multiple correlations between variables,this paper presents an improved PCA feature extraction method based on K-maxmin clustering,which combines with RelieF algorithm to remove non-correlative features for improving efficiency and accuracy farther.Experimental results show that this method is better than traditional PCA method in feature extraction.

Key words: feature extraction, Principal Component Analysis(PCA), multiple correlation, RelieF algorithm, K-maxmin clustering

摘要: 针对主成分分析(Principal Component Analysis,PCA)在克服变量多重相关性中的局限作用,提出了基于K-maxmin聚类的改进PCA特征提取方法,并结合RelieF算法去除分类不相关特征,可进一步提高算法效率和准确性。实验结果表明,该方法的特征提取效果优于传统的PCA方法。

关键词: 特征提取, 主成分分析, 多重相关, RelieF算法, K-maxmin聚类

CLC Number: