Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (34): 222-224.DOI: 10.3778/j.issn.1002-8331.2009.34.069
• 工程与应用 • Previous Articles Next Articles
CHEN Ling-na,LUO Yang,CHEN Zeng-ke
Received:
Revised:
Online:
Published:
Contact:
陈灵娜,罗 扬,陈增科
通讯作者:
Abstract: Traditional segmentation methods can not realize true medical image segmentation,therefore a new approach of medical image segmentation based on principle of maximum entropy is presented in this paper.The method uses threshold segmentation,boundary tracking and mathematical morphology in a comprehensive way,and it improves the speed and accuracy of segmentation.Analysis and experiment prove that this method can extract Regions Of Interest(ROI) in the liver tumor CT images.
摘要: 传统的分割方法难以实现医学图像准确地分割,提出了基于最大信息熵原理的医学图像分割方法。该方法集成了阈值分割、边界跟踪和数学形态学,提高了分割的精度和速度。分析和实验结果表明,采用该方法对肝肿瘤CT图像进行分割时,能自动准确地提取出医生感兴趣的区域。
CLC Number:
TP391
CHEN Ling-na,LUO Yang,CHEN Zeng-ke. New method on liver tumor CT image segmentation[J]. Computer Engineering and Applications, 2009, 45(34): 222-224.
陈灵娜,罗 扬,陈增科. 一种新的肝肿瘤CT图像分割方法[J]. 计算机工程与应用, 2009, 45(34): 222-224.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2009.34.069
http://cea.ceaj.org/EN/Y2009/V45/I34/222