Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (31): 245-248.DOI: 10.3778/j.issn.1002-8331.2009.31.073
• 工程与应用 • Previous Articles
LIU Song1,LI Zhi-shu1,LI Qi2
Received:
Revised:
Online:
Published:
Contact:
刘 松1,李志蜀1,李 奇2
通讯作者:
Abstract: A special kind of path planning is complete coverage path planning.There are a lot of algorithms on this problem have been developed,e.g.template based,cellular decomposition.But these algorithms just cover the complete area;they are not designed to optimize the process.This paper presents a method of complete coverage path planning based on genetic algorithms,which combine the advantages of cellular decomposition and template algorithm.The environment is divided in sub-regions as in rectangular decomposition method,and then Genetic Algorithms(GA) is used to compute and find the order of the sub-regions and the appropriate template for each region. The algorithm is tested in the virtual environment;the simulation results confirm the feasibility of this method.
Key words: complete coverage path planning, Genetic Algorithms(GA), rectangular decomposition method, template algorithm
摘要: 全区域覆盖是一种特殊的路径规划,要求遍历环境中所有的可达区域。目前已经提的许多算法,如模板算法、分块算法等,都只能保证覆盖所有的区域,对于寻找全局最优解却无能为力。提出了一种基于遗传算法的全区域覆盖算法,结合分块算法和模板算法的优点。先采用矩形分解法将环境划分成若干个相邻的子模块,并为每一个子模块选用相应的模板,从而生成覆盖路径,然后采用遗传算法找出最优的路径。算法在虚拟环境中进行了实验,实验结果证明了其可行性和有效性。
关键词: 全区域覆盖路径规划, 遗传算法, 矩形分解法, 模板算法
CLC Number:
TP24
LIU Song1,LI Zhi-shu1,LI Qi2. Improved Genetic Algorithms optimal area covering path planning for family robot[J]. Computer Engineering and Applications, 2009, 45(31): 245-248.
刘 松1,李志蜀1,李 奇2. 机器人全覆盖最优路径规划的改进遗传算法[J]. 计算机工程与应用, 2009, 45(31): 245-248.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2009.31.073
http://cea.ceaj.org/EN/Y2009/V45/I31/245