Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (26): 138-140.DOI: 10.3778/j.issn.1002-8331.2009.26.040

• 数据库、信息处理 • Previous Articles     Next Articles

Dynamic fuzzy relation and its application research in data clustering

LIU Fang1,LI Fan-zhang2   

  1. 1.Department of Information,Suzhou Institute of Trade & Commerce,Suzhou,Jiangsu 215009,China
    2.School of Computer Science & Technology,Soochow University,Suzhou,Jiangsu 215006,China
  • Received:2008-05-28 Revised:2008-08-12 Online:2009-09-11 Published:2009-09-11
  • Contact: LIU Fang

DF关系及其在数据聚类中的应用研究

刘 芳1,李凡长2   

  1. 1.苏州经贸职业技术学院 信息系,江苏 苏州 215009
    2.苏州大学 计算机科学与技术学院,江苏 苏州 215006
  • 通讯作者: 刘 芳

Abstract: Based on dynamic fuzzy relation,the concept of cut-matrix and a method of building dynamic fuzzy equivalence relation according to dynamic fuzzy similarity relation are presented.On such basis,combining classification technology in data mining,a clustering algorithm for dynamic fuzzy data is proposed.Using this algorithm,not only widen the range of clustering objects,but also can meet actual requirement.At last,an example is presented to illustrate the proposed algorithm.

Key words: dynamic fuzzy set, dynamic fuzzy similarity relation, dynamic fuzzy equivalence relation, clustering algorithm

摘要: 基于DF关系,给出了DF关系截矩阵的定义,以及由DF相似关系构造DF等价关系的方法,并在此基础上结合数据挖掘中的分类技术,提出了一种面向DF数据的聚类算法,该算法的提出不但能拓宽聚类对象的范围,而且更符合实际需求。最后给出了运用该算法的示例。

关键词: 动态模糊集, 动态模糊相似关系, 动态模糊等价关系, 聚类算法