Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (18): 182-184.DOI: 10.3778/j.issn.1002-8331.2009.18.054

• 图形、图像、模式识别 • Previous Articles     Next Articles

Application of integration learning SVM in image retrieval

LIANG Jing-min   

  1. Department of Arts Design and Information Technology,Guangdong Women’s Polytechnic College,Guangzhou 511450,China
  • Received:2008-09-19 Revised:2008-12-15 Online:2009-06-21 Published:2009-06-21
  • Contact: LIANG Jing-min

集成学习SVM在图像检索中的应用

梁竞敏   

  1. 广东女子职业技术学院 艺术设计与信息技术系,广州 511450
  • 通讯作者: 梁竞敏

Abstract: An image retrieval method combining SVM and Adaboost algorithm is proposed.The proposed approach selects the most informative samples in database to train SVM,it can reduce the feedback rounds and the number of samples effectively,and it can use both advantages to improve the accuracy of image retrieval.At last Adaboost method is proposed to integrate studying with SVM,and it improves the image retrieval performance.The experiments show that the method work well solves the small sample size problem and it can improve the retrieval efficiency and performance consistently under the condition of limited training samples.

Key words: content-based image retrieval, support vector machines, integration learning, relevance feedback, Adaboost algorithm

摘要: 提出一种基于SVM和Adaboost集成学习相结合的相关反馈算法。在相关反馈过程中选择最具信息的样本训练支持向量机,可以有效减少相关反馈的次数和所需学习样本的数量,通过两者的互补来有效地提高图像检索的精度。最后提出Adaboost算法对SVM分类器进行加权投票,这样进一步提高了图像检索的性能。实验表明,该方法较好地解决了图像检索中的小样本选择问题,能够显著提高图像检索的效率和性能。

关键词: 基于内容的图像检索, 支持向量机, 集成学习, 相关反馈, Adaboost算法