Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (12): 147-148.DOI: 10.3778/j.issn.1002-8331.2009.12.048
• 数据库、信号与信息处理 • Previous Articles Next Articles
SHI Rui-fang
Received:
Revised:
Online:
Published:
Contact:
史瑞芳
通讯作者:
Abstract: Naïve Bayes method is a simple and effective established probability categorization method at present.However,the problems on scattered data in methodology and Laplace smoothness method have some disadvantages.Therefore,author proposes to use uni-gram smoothness method to improve the condition and the effect on categorization by Bayes method.
Key words: Bayes text categorization, scattered data, smoothness
摘要: 朴素贝叶斯文本分类是目前公认的一种简单有效的概率分类方法,但该方法的数据稀疏问题以及所采用的Laplace平滑方法还不是最优,存在一定的缺陷。因此,用一元统计语言模型的平滑方法来改进数据稀疏状况,提高了分类效果。
关键词: 贝叶斯文本分类, 数据稀疏, 平滑
SHI Rui-fang. Research and improvement on Naive Bayes text classifier[J]. Computer Engineering and Applications, 2009, 45(12): 147-148.
史瑞芳. 贝叶斯文本分类器的研究与改进[J]. 计算机工程与应用, 2009, 45(12): 147-148.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2009.12.048
http://cea.ceaj.org/EN/Y2009/V45/I12/147