Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (6): 180-183.DOI: 10.3778/j.issn.1002-8331.2009.06.051

• 图形、图像、模式识别 • Previous Articles     Next Articles

Image annotation based on genetic feature selection and support vector machines

LI Ran1,ZHAO Tian-zhong1,ZHANG Ya-fei2,XIAO Qi1,LI Yang1

  

  1. 1.Institute of Command Automation,PLA University of Science and Technology,Nanjing 210007,China
    2.PLA University of Science and Technology,Nanjing 210007,China
  • Received:2008-08-29 Revised:2008-10-07 Online:2009-02-21 Published:2009-02-21
  • Contact: LI Ran

基于遗传特征选择和支持向量机的图像标注

李 冉1,赵天忠1,张亚非2,肖 琪1,李 阳1   

  1. 1.解放军理工大学 指挥自动化学院,南京 210007
    2.解放军理工大学,南京 210007
  • 通讯作者: 李 冉

Abstract: In order to improve the accuracy and efficiency of image annotation system,an image annotation method based on a genetic feature selection and support vector machines is proposed.The method extracts the image visual features from the multimedia content description interface(MPEG-7) standard,uses a bi-coded chromosome genetic algorithm to select optimal weighted feature subset from MPEG-7 standard,and trains classifiers of the support vector machines using majority voting scheme for image annotation.The annotation results over 2 000 Corel images show that the method can select optimal weighted feature subset,and improves the accuracy and efficiency of image annotation system.

摘要: 为了提高图像标注系统的精度和效率,提出了基于遗传特征选择和支持向量机的图像标注方法。该方法从多媒体描述接口(MPEG-7)标准中抽取图像的视觉特征,采用双编码遗传算法从MPEG-7标准中选择最优的加权特征子集,并训练支持向量机分类器用于图像标注,支持向量机分类器采用多数投票机制。对2 000幅Corel图像的标注结果表明:该方法可以获得最优的加权特征子集,提高了图像标注系统的精度和效率。