Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (2): 31-33.DOI: 10.3778/j.issn.1002-8331.2009.02.009

• 博士论坛 • Previous Articles     Next Articles

Tracking of maneuvering targets based on adaptive theory

XIONG Mao-tao1,2,WU Qin-zhang1   

  1. 1.Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu 610209,China
    2.Graduate University of Chinese Academy of Sciences,Beijing 100039,China
  • Received:2008-09-19 Revised:2008-10-23 Online:2009-01-11 Published:2009-01-11
  • Contact: XIONG Mao-tao



  1. 1.中国科学院 光电技术研究所,成都 610209
    2.中国科学院 研究生院,北京 100039
  • 通讯作者: 熊茂涛

Abstract: In the tracking and orientation of maneuvering targets,a new nonlinear Adaptive Extended Kalman Filter(AEKF) algorithm based on current statistical model is proposed,due to nonlinear character of the system connect with the excellence of the extended Kalman filtering and the adaptive theory.It expresses variation of acceleration with the information of position and angle to carry out self-adaption,and eliminates random error and noise variance to elevate the accuracy of tracking.Analytic results of Monte Carlo simulation proves the AEKF algorithm is right and feasible,and the accuracy and the stability are both improved.It has better performance than the traditional EKF,Modified Variance EKF(MVEKF) algorithms.The method affordes a new application to the tracking and orientation of maneuvering targets.

Key words: tracking of maneuvering target, nonlinear prediction, the Adaptive Extended Kalman Filter(AEKF) algorithm, Monte Carlo simulation

摘要: 在机动目标跟踪与定位中,结合EKF和自适应理论的优点和目标跟踪的非线性特征,提出了一种非线性系统的基于“当前”统计模型的自适应扩展卡尔曼滤波算法,根据机动目标的测量信息修正加速度方差,消除随机误差和噪声的干扰,提高预测的精度。通过Monte Carlo对比仿真实验表明该算法正确有效,定位精度较高,滤波效果得到改善,同时增强了稳定性,优于一般的EKF和MVEKF算法,为机动目标精确跟踪与定位的实现提供一种新的方法。

关键词: 机动目标跟踪, 非线性预测, 自适应扩展卡尔曼滤波算法, Monte Carlo仿真