WANG Yulian, LU Mingming. Interpretable Automatic Detection of Android Malware Based on Graph Embedding[J]. Computer Engineering and Applications, 2021, 57(23): 122-128.
[1] CARLINI N,WAGNER D.Towards evaluating the robustness of neural networks[C]//2017 IEEE Symposium on Security and Privacy,2017:39-57.
[2] WANG W,WANG X,FENG D,et al.Exploring permission-induced risk in Android applications for malicious application detection[J].IEEE Transactions on Information Forensics and Security,2014,9(11):1869-1882.
[3] VARSHA M V,VINOD P,DHANYA K A.Heterogeneous feature space for Android malware detection[C]//2015 Eighth International Conference on Contemporary Computing,2015:383-388.
[4] SARACINO A,SGANDURRA D,DINI G,et al.Madam:effective and efficient behavior-based Android malware detection and prevention[J].IEEE Transactions on Dependable and Secure Computing,2016,15(1):83-97.
[5] ZHU J,WU Z,GUAN Z,et al.API sequences based malware detection for Android[C]//2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops(UIC-ATC-ScalCom),2015:673-676.
[6] BURGUERA I,ZURUTUZA U,NADJM-TEHRANI S.Crowdroid:behavior-based malware detection system for Android[C]//Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices,2011:15-26.
[7] RASTOGI V,CHEN Y,ENCK W.AppsPlayground:automatic security analysis of smartphone applications[C]//Proceedings of the Third ACM Conference on Data and Application Security and Privacy,2013:209-220.
[8] YUAN Z,LU Y,XUE Y.Droiddetector:Android malware characterization and detection using deep learning[J].Tsinghua Science and Technology,2016,21(1):114-123.
[9] YANG X,LO D,LI L,et al.Characterizing malicious Android apps by mining topic-specific data flow signatures[J].Information and Software Technology,2017,90:27-39.
[10] SUAREZ-TANGIL G,DASH S K,AHMADI M,et al.Droidsieve:fast and accurate classification of obfuscated Android malware[C]//Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy,2017:309-320.
[11] KONG D,YAN G.Discriminant malware distance learning on structural information for automated malware classification[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2013:1357-1365.
[12] DAM K H T,TOUILI T.Learning Android malware[C]//Proceedings of the 12th International Conference on Availability,Reliability and Security,2017:1-9.
[13] KARBAB E M B,DEBBABI M,DERHAB A,et al.Android malware detection using deep learning on API method sequences[J].arXiv:1712.08996,2017.
[14] MCLAUGHLIN N,MARTINEZ DEL RINCON J,KANG B J,et al.Deep Android malware detection[C]//Proceedings of the Seventh ACM Conference on Data and Application Security and Privacy,2017:301-308.
[15] WANG W,ZHAO M,WANG J.Effective Android malware detection with a hybrid model based on deep autoencoder and convolutional neural network[J].Journal of Ambient Intelligence and Humanized Computing,2019,10(8):3035-3043.
[16] MELIS M,MAIORCA D,BIGGIO B,et al.Explaining black-box Android malware detection[C]//2018 26th European Signal Processing Conference(EUSIPCO),2018:524-528.
[17] GUO W,MU D,XU J,et al.Lemna:explaining deep learning based security applications[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,2018:364-379.
[18] ZHU D,XI T,JING P,et al.A transparent and multimodal malware detection method for Android apps[C]//Proceedings of the 22nd International ACM Conference on Modeling,Analysis and Simulation of Wireless and Mobile Systems,2019:51-60.
[19] GROVER A,LESKOVEC J.Node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2016:855-864.
[20] PEROZZI B,KULKARNI V,CHEN H,et al.Online learning of multi-scale network embeddings[C]//Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining,2017:258-265.
[21] ARZT S,RASTHOFER S,BODDEN E.SUSI:a tool for the fully automated classification and categorization of Android sources and sinks:TUDCS-2013-0114[R].University of Darmstadt,2013.
[22] PAGLIARDINI M,GUPTA P,JAGGI M.Unsupervised learning of sentence embeddings using compositional n-gram features[J].arXiv:1703.02507,2017.
[23] WEI F,LI Y,ROY S,et al.Deep ground truth analysis of current Android malware[C]//International Conference on Detection of Intrusions and Malware,and Vulnerability Assessment,2017:252-276.
[24] ALLIX K,BISSYANDé T F,KLEIN J,et al.Androzoo:collecting millions of Android apps for the research community[C]//2016 IEEE/ACM 13th Working Conference on Mining Software Repositories(MSR),2016:468-471.
[25] ARP D,SPREITZENBARTH M,HUBNER M,et al.Drebin:effective and explainable detection of Android malware in your pocket[C]//Proceedings of NDSS,2014:23-26.
[26] HAN J,PEI J,YIN Y.Mining frequent patterns without candidate generation[J].ACM Sigmod Record,2000,29(2):1-12.