Computer Engineering and Applications ›› 2017, Vol. 53 ›› Issue (23): 6-11.DOI: 10.3778/j.issn.1002-8331.1708-0214

Previous Articles     Next Articles

Edge detection algorithm based on intuitionistic fuzzy divergence for noisy image

LIU Yi1,2, ZHANG Quan1,2, ZHANG Pengcheng1,2, SONG Shengtao1, CHEN Yang3, GUI Zhiguo1,2   

  1. 1.Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan 030051, China
    2.School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
    3.School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
  • Online:2017-12-01 Published:2017-12-14

基于直觉模糊散度的噪声图像边缘检测

刘  祎1,2,张  权1,2,张鹏程1,2,宋胜涛1,陈  阳3,桂志国1,2   

  1. 1.中北大学 山西省生物医学成像与影像大数据重点实验室,太原 030051
    2.中北大学 信息与通信工程学院,太原 030051
    3.东南大学 计算机科学与工程学院,南京 211189

Abstract: As traditional image edge detection algorithms cannot suppress noise well, an edge detection algorithm based on intuitionistic fuzzy set is proposed. This method sets a template that indicates the flat region and in image window constructs a membership function, which considers both gradient and variance information, then the intuitionistic fuzzy divergence is calculated between the template and each image window through the image to locate and output edges. Experimental results show that the proposed algorithm can get good detection results for images seriously contaminated by Gaussian and uniform noise.

Key words: noisy image, edge detection, Intuitionistic Fuzzy Set(IFS), Intuitionistic Fuzzy Divergence(IFD)

摘要: 针对传统图像边缘检测算法抑制噪声能力差的问题,提出一种基于直觉模糊集(Intuitionistic Fuzzy Set,IFS)的边缘检测算法。该算法设定了一个表示平坦区域的模板图像,并在图像窗口内构造了一种同时考虑了图像梯度和图像窗口的方差信息的隶属度函数,然后通过计算图像窗口与模板图像之间的模糊直觉散度(Intuitionistic Fuzzy Divergence,IFD)对边缘进行定位和输出。实验结果表明,对于被高斯噪声或均匀噪声严重污染的图像,该算法能够得到较好的检测结果。

关键词: 噪声图像, 边缘检测, 模糊直觉集(IFS), 模糊直觉散度(IFD)