Computer Engineering and Applications ›› 2017, Vol. 53 ›› Issue (20): 56-60.DOI: 10.3778/j.issn.1002-8331.1705-0069
Previous Articles Next Articles
ZHANG Lixia, SHAO Yong
Online:
Published:
张丽霞,邵 勇
Abstract: This paper gives the definition of e-invertible matrices, which is a generalization of invertible matrices over semirings. Through exploring the interrelationships between invertible matrices and e-invertible matrices, the equivalent characterizations of e-invertible matrices over commutative semirings are given. Also, by studying the semigroup of e-invertible matrices, the decomposition theorem of such matrices semigroup over commutative semirings is obtained. Finally, it proves that such matrices semigroup exists a maximal subgroup, and the union of all maximal subgroups forms a Clifford semigroup.
Key words: e-invertible matrices, maximal subgroup, subdirect product, Clifford semigroup
摘要: 对半环上可逆矩阵的概念进行推广,给出了[e]-可逆矩阵的定义。通过探讨可逆矩阵与[e]-可逆矩阵之间的内在联系,给出了交换半环上[e]-可逆矩阵的等价刻画。同时,对交换半环上[e]-可逆矩阵的全体关于矩阵乘法构成的半群进行研究,给出了此类矩阵半群的分解定理,并证明了此类矩阵半群均存在极大子群,且所有极大子群的并是Clifford半群。
关键词: [e]-可逆矩阵, 极大子群, 次直积, Clifford半群
ZHANG Lixia, SHAO Yong. Study on a class of matrices over commutative semirings[J]. Computer Engineering and Applications, 2017, 53(20): 56-60.
张丽霞,邵 勇. 关于交换半环上一类矩阵的研究[J]. 计算机工程与应用, 2017, 53(20): 56-60.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.1705-0069
http://cea.ceaj.org/EN/Y2017/V53/I20/56