[1] 陈明一, 李洪均. 拓扑信息引导的视频异常行为检测方法[J]. 计算机工程与应用, 2024, 60(16): 228-235.
CHEN M Y, LI H J. Topology information guided video abn-ormal behavior detection method[J]. Computer Engineering and Applications, 2024, 60(16): 228-235.
[2] YU M, QUAN T Q, PENG Q L, et al. A model-based collaborate filtering algorithm based on stacked AutoEncoder[J]. Neural Computing and Applications, 2022, 34(4): 2503-2511.
[3] MASSOLI F V, FALCHI F, KANTARCI A, et al. MOCCA: multilayer one-class classification for anomaly detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(6): 2313-2323.
[4] LU Y W, YU F, REDDY M K K, et al. Few-shot scene-adaptive anomaly detection[C]//Proceedings of the 16th Eur-opean Conference on Computer Vision. Cham: Springer, 2020: 125-141.
[5] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the International Conference on Machine Learning, 2017.
[6] LV H, CHEN C, CUI Z, et al. Learning normal dynamics in videos with meta prototype network[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 15420-15429.
[7] ZHANG S Y, SONG X H, WANG C D, et al. Object-meta and MSGAE-MP: multi-dimensional video anomaly detection[J]. IET Computer Vision, 2025, 19(1): e12156.
[8] LIU W, LUO W X, LIAN D Z, et al. Future frame prediction for anomaly detection-a new baseline[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6536-6545.
[9] GONG D, LIU L Q, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2020: 1705-1714.
[10] 朱新瑞, 钱小燕, 施俞洲, 等. 长短期时间序列关联的视频异常事件检测[J]. 中国图象图形学报, 2024, 29(7): 1998-2010.
ZHU X R, QIAN X Y, SHI Y Z, et al. Video anomaly dete-ction with long-and-short-term time series correlations[J]. Journal of Image and Graphics, 2024, 29(7): 1998-2010.
[11] YANG Z W, LIU J, WU Z Y, et al. Video event restoration based on keyframes for video anomaly detection[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 14592-14601.
[12] 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 计算机应用, 2024, 44(8): 2551-2557.
LIU Y H, JI G L, ZHANG H P. Video pedestrian anomaly detection method based on skeleton graph and mixed att-ention[J]. Journal of Computer Applications, 2024, 44(8): 2551-2557.
[13] 张红民, 颜鼎鼎, 田钱前. 改进时空图卷积网络的视频异常检测方法[J]. 光电工程, 2024, 51(5): 48-60.
ZHANG H M, YAN D D, TIAN Q Q. Improved spatio-temporal graph convolutional networks for video anomaly detection[J]. Opto-Electronic Engineering, 2024, 51(5): 48-60.
[14] 李凡长, 刘洋, 吴鹏翔, 等. 元学习研究综述[J]. 计算机学报, 2021, 44(2): 422-446.
LI F Z, LIU Y, WU P X, et al. A survey on recent advances in meta-learning[J]. Chinese Journal of Computers, 2021, 44(2): 422-446.
[15] WANG H C, ZHANG X D, HU Y T, et al. Few-shot semantic segmentation with democratic attention networks[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 730-746.
[16] PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14360-14369.
[17] LE V T, KIM Y G. Attention-based residual autoencoder for video anomaly detection[J]. Applied Intelligence, 2023, 53(3): 3240-3254.
[18] CHO M, KIM T, KIM W J, et al. Unsupervised video anomaly detection via normalizing flows with implicit latent features[J]. Pattern Recognition, 2022, 129: 108703.
[19] HYUN W, NAM W J, LEE S W. Dissimilate-and-assimilate strategy for video anomaly detection and localization[J]. Neurocomputing, 2023, 522: 203-213.
[20] AICH A, PENG K C, ROY-CHOWDHURY A K. Cross-domain video anomaly detection without target domain adaptation[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 2578-2590.
[21] SINGH R, SAINI K, SETHI A, et al. STemGAN: spatio-temporal generative adversarial network for video anomaly detection[J]. Applied Intelligence, 2023, 53(23): 28133-28152.
[22] LI S F, CHENG Y, ZHAO L Y, et al. Anomaly detection with multi-scale pyramid grid templates[J]. Multimedia Tools and Applications, 2024, 83(4): 9929-9947.
[23] LI D H, NIE X S, GONG R, et al. Multi-branch GAN-based abnormal events detection via context learning in surveillance videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(5): 3439-3450.
[24] YE Q, SONG Z H, ZHAO Y Q, et al. Dual-channel autoencoder with key region feature enhancement for video anomalous event detection[J]. Neural Processing Letters, 2024, 56(3): 186.
[25] LI N J, CHANG F L, LIU C S. Spatial-temporal cascade autoencoder for video anomaly detection in crowded scenes[J]. IEEE Transactions on Multimedia, 2021, 23: 203-215.
[26] 潘理虎, 彭守信, 张睿, 等. 面向运动前景区域的视频异常检测[J]. 计算机应用, 2025, 45(4): 1300-1309.
PAN L H, PENG S X, ZHANG R, et al. Video anomaly detection for moving foreground regions[J]. Journal of Computer Applications, 2025, 45(4): 1300-1309. |