计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (24): 197-205.DOI: 10.3778/j.issn.1002-8331.2409-0408

• 模式识别与人工智能 • 上一篇    下一篇

元学习和时空关系引导的视频异常检测方法

杜宇龙,李洪均+   

  1. 南通大学 信息科学技术学院,江苏 南通 226019
  • 出版日期:2025-12-15 发布日期:2025-12-15

Video Anomaly Detection Method Guided by Meta-Learning and Spatio-Temporal Relationship

DU Yulong, LI Hongjun+   

  1. School of Information Science and Technology, Nantong University, Nantong, Jiangsu 226019, China
  • Online:2025-12-15 Published:2025-12-15

摘要: 随着监控设备的广泛应用和人们对公共安全的日益重视,视频异常检测已成为计算机视觉领域的研究热点。自编码器在解码过程中只关注预测帧的视觉特征与输入视频帧的对应关系,这使得模型对某些异常对象不敏感。同时,注意时空信息有助于更好地理解视频。提出了一种基于元学习的视频异常检测方法。在自编码器中引入元学习模块,利用其学习特性对特征进行编码、存储和更新,从而增强模型的泛化能力。设计了一个关注对象间时空关系的关注模块,并将其应用到未来帧预测网络中,以更准确地预测下一帧并检测异常事件。通过广泛的实验验证,该方法在UCSD Ped2、CUHK Avenue和ShanghaiTech视频异常检测数据集上取得了显著的性能提升,准确率分别达到了97.63%、88.41%和75.43%,显示了良好的准确性和鲁棒性。

关键词: 视频异常检测, 元学习, 时空注意机制, 未来帧异常检测

Abstract: With the wide application of monitoring equipment and people’s increasing attention to public safety, video anomaly detection has become a research hotspot in the field of computer vision. In the decoding process, the autoencoder only pays attention to the correspondence between the visual features of the predicted frame and the input video frame, which makes the model insensitive to some abnormal objects. At the same time, paying attention to temporal and spatial information helps to better understand the video. This paper proposes a video anomaly detection method based on meta-learning. Firstly, a meta-learning module is introduced into the autoencoder to encode, store and update the features with its learning characteristics, thus enhancing the generalization ability of the model. Secondly, this paper designs an attention module that focuses on the spatio-temporal relationship between objects and applies it to the future frame prediction network to predict the next frame more accurately and detects abnormal events. Finally, through extensive experimental verification, the proposed method has achieved significant performance improvement in UCSD Pedestrian 2, CUHK Avenue and ShanghaiTech video anomaly detection dataset, with accuracy rates reaching 97.63%, 88.41% and 75.43%, respectively. It shows good accuracy and robustness.

Key words: video anomaly detection, meta-learning, spatio-temporal attention mechanism, future frame anomaly detection