[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians?, 2021, 71(3): 209-249.
[2] 孙福艳, 王琼, 吕宗旺, 等.深度学习在结肠息肉分割中的应用综述[J].计算机工程与应用, 2023, 59(23): 15-27.
SUN F Y, WANG Q, LYU Z W, et al. Review of application of deep learning in colon polyp segmentation[J]. Computer Engineering and Applications, 2023, 59(23): 15-27.
[3] LEE J W J, ZHU F, SRIVASTAVA S, et al. Severity of gastric intestinal metaplasia predicts the risk of gastric cancer: a prospective multicentre cohort study (GCEP)[J]. Gut, 2022, 71(5): 854-863.
[4] 崔浩阳, 丁偕, 张敬谊. 基于细胞图卷积的组织病理图像分类研究[J]. 计算机工程与应用, 2020, 56(24): 223-228.
CUI H Y, DING X, ZHANG J Y. Research on classification of histopathological image based on cell graph convolutional network[J]. Computer Engineering and Applications, 2020, 56(24): 223-228.
[5] LI Y, ZHU R, MI L, et al. Segmentation of white blood cell from acute lymphoblastic leukemia images using dual-threshold method[J].Computational and Mathematical Methods in Medicine, 2016, 2016: 9514707.
[6] SZENASI S. Distributed region growing algorithm for medical image segmentation[J]. International Journal of Circuits, Systems and Signal Processing, 2014, 8(1): 173-181.
[7] MOLNAR C, JERMYN I H, KATO Z, et al. Accurate morphology preserving segmentation of overlapping cells based on active contours[J].Scientific Reports, 2016, 6: 32412.
[8] LIN C H, CHEN C C. Image segmentation based on edge dete-ction and region growing for thinprep-cervical smear[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2010, 24(7): 1061-1089.
[9] ZHANG C, YARKONY J, HAMPRECHT F A. Cell detection and segmentation using correlation clustering[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2014: 9-16.
[10] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241.
[11] JOSEPH N, KOLLURU C, BENETZ B A M, et al. Quantitative and qualitative evaluation of deep learning automatic segmentations of corneal endothelial cell images of reduced image quality obtained following cornea transplant[J]. J Med Imaging (Bellingham), 2020, 7(1): 014503.
[12] ROY M R, AMEER P M. Segmentation of leukocyte by semantic segmentation model: a deep learning approach[J]. Biomedical Signal Processing and Control, 2021, 65: 102385.
[13] CHANCHAL A K, KUMAR A, LAL S, et al. Efficient and robust deep learning architecture for segmentation of kidney and breast histopathology images[J]. Computers & Electrical Engineering, 2021, 92: 107177.
[14] FIAZ M, HEIDARI M, ANWER R, et al. SA2-Net: scale-aware attention network for microscopic image segmentation[J]. arXiv: 2309.16661, 2023.
[15] TANG F L, XU Z X, HUANG Q M, et al. DuAT: dual-aggregation transformer network forMedical image segmentation[C]//Proceedings of the Pattern Recognition and Computer Vision.Singapore: Springer Nature Singapore, 2024: 343-356.
[16] WANG H N, CAO P, LIU X L, et al. Narrowing the semantic gaps in U-Net with learnable skip connections: the case of medical image segmentation[J]. arXiv:2312.15182, 2023.
[17] WANG W H, XIE E Z, LI X, et al. PVT v2: improved baselines with pyramid vision transformer[J]. Computational Visual Media, 2022, 8(3): 415-424.
[18] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[19] LOU M, ZHANG S, ZHOU H Y, et al. TransXNet: learning both global and local dynamics with a dual dynamic token mixer for visual recognition[J]. arXiv:2310.19380, 2023.
[20] PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module[J].arXiv:1807.06514, 2018.
[21] WEI J, WANG S H, HUANG Q M. F3Net: fusion, feedback and focus for salient object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12321-12328.
[22] SHI L, LI X, HU W, et al. EBHI-Seg: a novel enteroscope biopsy histopathological hematoxylin and eosin image dataset for image segmentation tasks[J]. Front Med (Lausanne), 2023, 10: 1114673.
[23] NAYLOR P, LAé M, REYAL F, et al. Segmentation of nuclei in histopathology images by deep regression of the distance map[J]. IEEE Transactions on Medical Imaging, 2019, 38(2): 448-459.
[24] IQBAL A, SHARIF M, KHAN M A, et al. FF-UNet: a U-shaped deep convolutional neural network for multimodal biomedical image segmentation[J]. Cognitive Computation, 2022, 14(4): 1287-1302.
[25] FAN D P, JI G P, ZHOU T, et al. PraNet: parallel reverse atte-ntion network for polyp segmentation[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Cham: Springer International Publishing, 2020: 263-273.
[26] WANG J F, HUANG Q M, TANG F L, et al. Stepwise feature fusion: local guides global[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 110-120.
[27] WU C, LONG C, LI S J, et al. MSRAformer: multiscale spatial reverse attention network for polyp segmentation[J]. Computers in Biology and Medicine, 2022, 151: 106274.
[28] METLEK S. CellSegUNet: an improved deep segmentation model for the cell segmentation based on UNet++?and residual UNet models[J]. Neural Computing and Applications, 2024, 36(11): 5799-5825.
[29] MONDAL S K, Talukder M S H , ALJAIDI M, et al. BloodCell-Net: a lightweight convolutional neural network for the classification of all microscopic blood cell images of the human body[J]. arXiv:2405.14875, 2024. |