[1] EL-SHAFAI W, MAHMOUD A A, EL-RABAIE E M, et al. Traditional Chinese medicine automated diagnosis based on knowledge graph reasoning[J]. Computers, Materials & Continua, 2022, 71(1): 159-170.
[2] 沈蓉蓉, 夏帅帅, 晏峻峰. 命名实体识别在中医药领域研究进展[J]. 医学信息学杂志, 2023, 44(1): 47-53.
SHEN R R, XIA S S, YAN J F. Research progress of named entity recognition in traditional Chinese medicine[J]. Journal of Medical Informatics, 2023, 44(1): 47-53.
[3] 赵继贵, 钱育蓉, 王魁, 等. 中文命名实体识别研究综述[J]. 计算机工程与应用, 2024, 60(1): 15-27.
ZHAO J G, QIAN Y R, WANG K, et al. Survey of Chinese named entity recognition research[J]. Computer Engineering and Applications, 2024, 60(1): 15-27.
[4] ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 1554-1564.
[5] LI X N, YAN H, QIU X P, et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6836-6842.
[6] 李莉, 奚雪峰, 盛胜利, 等. 深度学习中文命名实体识别研究进展[J]. 计算机工程与应用, 2023, 59(24): 46-69.
LI L, XI X F, SHENG S L, et al. Research progress on named entity recognition in Chinese deep learning[J]. Computer Engineering and Applications, 2023, 59(24): 46-69.
[7] 肖瑞, 胡冯菊, 裴卫. 基于BiLSTM-CRF的中医文本命名实体识别[J]. 世界科学技术-中医药现代化, 2020, 22(7): 2504-2510.
XIAO R, HU F J, PEI W. Chinese medicine text named entity recognition based on BiLSTM-CRF[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2020, 22(7): 2504-2510.
[8] 胡为, 刘伟, 石玉敬. 基于BERT-BiLSTM-CRF的中医医案命名实体识别方法[J]. 计算机时代, 2022(9): 119-122.
HU W, LIU W, SHI Y J. Named entity recognition of TCM medical records based on BERT-BiLSTM-CRF[J]. Computer Era, 2022(9): 119-122.
[9] 徐丽娜, 李燕, 钟昕妤, 等. 基于BERT的中医方剂文本命名实体识别[J]. 医学信息, 2023, 36(4): 32-37.
XU L N, LI Y, ZHONG X Y, et al. Named entity recognition of traditional Chinese medicine prescription based on BERT[J]. Journal of Medical Information, 2023, 36(4): 32-37.
[10] CHO M, HA J, PARK C, et al. Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition[J]. Journal of Biomedical Informatics, 2020, 103: 103381.
[11] 刘歆宁. 融合多特征及协同注意力的医学命名实体识别[J]. 计算机工程与应用, 2024, 60(6): 188-198.
LIU X N. Medical named entity recognition based on multi-feature and co-attention[J]. Computer Engineering and Applications, 2024, 60(6): 188-198.
[12] 罗熹, 夏先运, 安莹, 等. 结合多头自注意力机制与BiLSTM-CRF的中文临床实体识别[J]. 湖南大学学报(自然科学版), 2021, 48(4): 45-55.
LUO X, XIA X Y, AN Y, et al. Chinese CNER combined with multi-head self-attention and BiLSTM-CRF[J]. Journal of Hunan University (Natural Sciences), 2021, 48(4): 45-55.
[13] SUI D B, CHEN Y B, LIU K, et al. Leverage lexical knowledge for Chinese named entity recognition via collaborative graph network[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 3828-3838.
[14] SONG C J, XIONG Y, HUANG W C, et al. Joint self-attention and multi-embeddings for Chinese named entity recognition[C]//Proceedings of the 6th International Conference on Big Data Computing and Communications. Piscataway: IEEE, 2020: 76-80.
[15] WU S, SONG X N, FENG Z H. MECT: multi-metadata embedding based cross-transformer for Chinese named entity recognition[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 1529-1539.
[16] MA R T, PENG M L, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5951-5960.
[17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Neural Information Processing Systems, 2017: 6000-6010.
[18] YAN H, DENG B, LI X, et al. TENER: adapting transformer encoder for named entity recognition[J]. arXiv:1911.04474, 2019.
[19] DOZAT T, MANNING C. Deep biaffine attention for neural dependency parsing[J]. arXiv:1611.01734, 2016.
[20] 李冀. 方剂学[M]. 北京: 中国中医药出版社, 2016.
LI J. Pharmacology of traditional Chinese medical formulae[M]. Beijing: China Press of Traditional Chinese Medicine, 2016.
[21] DENG N, FU H, CHEN X. Named entity recognition of traditional Chinese medicine patents based on BiLSTM-CRF[J]. Wireless Communications and Mobile Computing, 2021, 2021: 6696205.
[22] SHI J T, SUN M X, SUN Z Y, et al. Multi-level semantic fusion network for Chinese medical named entity recognition[J]. Journal of Biomedical Informatics, 2022, 133: 104144.
[23] LIU W, XU T, XU Q, et al. An encoding strategy based word-character LSTM for Chinese NER[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 2379-2389.
[24] GUI T, MA R T, ZHANG Q, et al. CNN-based Chinese NER with lexicon rethinking[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2021: 4982-4988.
[25] SU J L, MURTADHA A, PAN S F, et al. Global pointer: novel efficient span-based approach for named entity recognition[J]. arXiv:2208.03054, 2022.
[26] ZHANG N Y, CHEN M S, BI Z, et al. CBLUE: a Chinese biomedical language understanding evaluation benchmark[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 7888-7915.
[27] WANG Y C, YU B W, ZHANG Y Y, et al. TPLinker: single-stage joint extraction of entities and relations through token pair linking[C]//Proceedings of the 28th International Conference on Computational Linguistics. 2020: 1572-1582.
[28] LI X Y, FENG J R, MENG Y X, et al. A unified MRC framework for named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5849-5859. |