计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (13): 329-337.DOI: 10.3778/j.issn.1002-8331.2408-0215

• 大数据与云计算 • 上一篇    下一篇

双重图卷积神经网络驱动的隐藏社区发现算法

王小刚,刘旭   

  1. 兰州交通大学 电子与信息工程学院,兰州 730070
  • 出版日期:2025-07-01 发布日期:2025-06-30

Hidden Community Detection Algorithm Driven by Dual Graph Convolutional Networks

WANG Xiaogang, LIU Xu   

  1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Online:2025-07-01 Published:2025-06-30

摘要: 隐藏社区检测有助于揭示网络深层次功能和结构特征,是一个具有挑战性的研究领域。隐藏社区由弱关系连接而成,受具有较强连接关系的显性社区影响,在网络中不易被检测到。当前的隐藏社区发现算法对节点属性信息和全局拓扑结构的综合利用仍显不足,为解决这一问题,提出了一种基于双重图卷积神经网络(GCN)联合优化隐藏社区发现算法——HCDGCN(hidden community detection based on dual GCN)。HCDGCN融合节点局部和全局结构特征,通过两个GCN共同迭代优化一个损失函数,并逐步削弱权重,使得弱关系社区变得清晰可见,实现了隐藏社区发现。在真实数据集上的实验结果表明,HCDGCN在隐藏社区发现方面优于现有基准方法,实现了更快的收敛速度和更优的社区划分。

关键词: 社区发现, 隐藏社区发现, 图卷积神经网络, 联合优化

Abstract: Hidden community detection is a challenging research topic that helps to uncover the underlying structural and functional features of networks. Explicit communities with stronger connections impact hidden communities, which are hard to find in networks because they are made up of weak links. The current hidden community discovery techniques do not fully use global topological structure and node attribute information. In order to tackle this problem, it provides HCDGCN (hidden community detection based on dual GCN), a joint optimization technique for hidden community detection based on dual graph convolutional networks (GCNs). By progressively weakening the weights and jointly maximizing a loss function using two GCNs, HCDGCN integrates local and global structural aspects of nodes, achieving hidden community identification and increasing the visibility of weak connection communities. Results from experiments on actual datasets demonstrate that HCDGCN performs better and converges more quickly than current benchmark techniques in hidden community discovery, achieving superior community partitioning.

Key words: community discovery, hidden community discovery, graph convolutional neural network, joint optimization