[1] BATMAZ Z, YUREKLI A, BILGE A, et al. A review on deep learning for recommender systems: challenges and remedies[J]. Artificial Intelligence Review, 2019, 52: 1-37.
[2] LIN X, WU J, ZHOU C, et al. Task-adaptive neural process for user cold-start recommendation[C]//Proceedings of the Web Conference 2021, 2021: 1306-1316.
[3] ZHU F, WANG Y, CHEN C, et al. Cross-domain recommendation: challenges, progress, and prospects[J]. arXiv:2103.
01696, 2021.
[4] CHANG W C, WU Y, LIU H, et al. Cross-domain kernel induction for transfer learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2017: 1763-1769.
[5] MAN T, SHEN H, JIN X, et al. Cross-domain recommendation: an embedding and mapping approach[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 2464-2470.
[6] ZHU Y, GE K, ZHUANG F, et al. Transfer-meta framework for cross-domain recommendation to cold-start users[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021: 1813-1817.
[7] SALAH A, TRAN T B, LAUW H. Towards source-aligned variational models for cross-domain recommendation[C]//Proceedings of the 15th ACM Conference on Recommender Systems, 2021: 176-186.
[8] SHI J, WANG Q. Cross-domain variational autoencoder for recommender systems[C]//2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT), 2019: 67-72.
[9] MAI S, ZENG Y, HU H. Multimodal information bottleneck: learning minimal sufficient unimodal and multimodal representations[J]. arXiv:2210.17444, 2022.
[10] ZAIDI A, ESTELLA-AGUERRI I, SHAMAI S. On the information bottleneck problems: models, connections, applications and information theoretic views[J]. Entropy, 2020, 22(2): 151.
[11] HU G, ZHANG Y, YANG Q. Conet: collaborative cross networks for cross-domain recommendation[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: 667-676.
[12] SHENG X R, ZHAO L, ZHOU G, et al. One model to serve all: star topology adaptive recommender for multi-domain CTR prediction[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021: 4104-4113.
[13] KANG S K, HWANG J, LEE D, et al. Semi-supervised learning for cross-domain recommendation to cold-start users[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019: 1563-1572.
[14] 童小凯, 朱欣娟, 王西汉, 等. 数字文化资源知识图谱多目标跨域推荐方法[J]. 计算机工程与应用, 2023, 59(10): 142-150.
TONG X K, ZHU X J, WANG X H, et al. Knowledge graph multi-target cross-domain recommendation on digital cultural resources[J]. Computer Engineering and Applications, 2023, 59(10): 142-150.
[15] WANG J, LV J. Tag-informed collaborative topic modeling for cross domain recommendations[J]. Knowledge-Based Systems, 2020, 203: 106119.
[16] ZHANG W, ZHANG P, ZHANG B, et al. A collaborative transfer learning framework for cross-domain recommendation[J]. arXiv:2306.16425, 2023.
[17] LIAO X, LIU W, ZHENG X, et al. PPGenCDR: a stable and robust framework for privacy-preserving cross-domain recommendation[J]. arXiv:2305.16163, 2023.
[18] HUAI Z, YANG Y, ZHANG M, et al. M2GNN: metapath and multi-interest aggregated graph neural network for tag-based cross-domain recommendation[J]. arXiv:2304.07911, 2023.
[19] EBESU T, SHEN B, FANG Y. Collaborative memory network for recommendation systems[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018: 515-524.
[20] GAO M, CHEN L, HE X, et al. Bine: bipartite network embedding[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018: 715-724.
[21] WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019: 165-174.
[22] ZHAO Z, ZHOU H, LI C, et al. Deepemlan: deep embedding learning for attributed networks[J]. Information Sciences, 2021, 543: 382-397.
[23] 胡新荣, 邓杰文, 罗瑞奇, 等. 基于用户兴趣感知的多关系推荐模型[J]. 计算机工程与应用, 2023, 59(11): 231-240.
HU X R, DENG J W, LUO R Q, et al. Multi-relationship recommendation model based on user interest-aware[J]. Computer Engineering and Applications, 2023, 59(11): 231-240.
[24] TISHBY N, PEREIRA F C, BIALEK W. The information bottleneck method[J]. arXiv preprint physics/0004057, 2000.
[25] GERSHMAN S, GOODMAN N. Amortized inference in probabilistic reasoning[C]//Proceedings of the Annual Meeting of the Cognitive Science Society, 2014.
[26] FEDERICI M, DUTTA A, FORRE P, et al. Learning robust representations via multi-view information bottleneck[J]. arXiv:2002.07017, 2020.
[27] LEE C, VAN DER SCHAAR M. A variational information bottleneck approach to multi-omics data integration[C]//International Conference on Artificial Intelligence and Statistics, 2021: 1513-1521.
[28] WAN Z, ZHANG C, ZHU P, et al. Multi-view information-bottleneck representation learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 10085-10092.
[29] ZHAO C, LI C, FU C. Cross-domain recommendation via preference propagation graph net[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019: 2165-2168.
[30] REN Z, ZHAO L, MA J, et al. Mixed information flow for cross-domain sequential recommendations[J]. ACM Transactions on Knowledge Discovery from Data, 2022, 16(4): 1-32.
[31] CAO J, LIN X, CONG X, et al. DisenCDR: learning disentangled representations for cross-domain recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022: 267-277.
[32] NATARAJAN S, VAIRAVASUNDARAM S, KOTECHA K, et al. CD-SemMF: cross-domain semantic relatedness based matrix factorization model enabled with linked open data for user cold start issue[J]. IEEE Access, 2022, 10: 52955-52970.
[33] POOLE B, OZAIR S, OORD A V D, et al. On variational bounds of mutual information[C]//Proceedings of the International Conference on Machine Learning, 2019: 5171-5180.
[34] CHENG P, HAO W, DAI S, et al. CLUB: a contrastive log-ratio upper bound of mutual information[C]]//Proceedings of the 37th International Conference on Machine Learning, 2020: 1779-1788. |