计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (13): 338-348.DOI: 10.3778/j.issn.1002-8331.2410-0170

• 大数据与云计算 • 上一篇    下一篇

面向序列推荐的扩散增强多视角意图对比学习方法

王澳飞,孙福振,孙秀娟,张文轩,王绍卿   

  1. 山东理工大学 计算机科学与技术学院,山东 淄博 255000
  • 出版日期:2025-07-01 发布日期:2025-06-30

Diffusion-Augmented Multi-View Intent Contrastive Learning Method for Sequential Recommendation

WANG Aofei, SUN Fuzhen, SUN Xiujuan, ZHANG Wenxuan, WANG Shaoqing   

  1. School of Computer Science and Technology, Shandong University of Technology, Zibo, Shandong 255000, China
  • Online:2025-07-01 Published:2025-06-30

摘要: 针对意图驱动的序列推荐中出现的数据稀疏性和意图信息提取不足问题,提出了一种基于扩散增强的多视角意图对比学习方法(DMVRec)。为学习原始项目间的购买意图相关性,在扩散模型反向过程中,通过融合原始序列意图信息和无分类器指导策略来预测高斯噪声。利用原始项目间的购买意图相关性信息指导反向过程的去噪,以得到增强序列的意图预测值,并利用余弦相似度计算每个位置下的增强项目。通过切分用户交互序列和聚类算法来构建意图监督信号,并分别在宏观和微观视角下利用意图对比学习来捕捉隐藏的用户意图信息。通过在四个公开数据集下实验,充分体现了DMVRec方法的优越性。其中,对比最先进基线,在HR@5指标上,提升7.03%,在NDCG@5指标上,提升4.53%。

关键词: 序列推荐, 扩散增强, 对比学习, 多视角意图

Abstract: To address data sparsity and inadequate intent extraction in intent-driven sequential recommendation, a diffusion-augmented multi-view intent contrastive learning method (DMVRec) is proposed. First, in the reverse diffusion process, Gaussian noise is predicted by integrating intent information from the original sequence with a classifier-free guidance strategy to learn purchasing intent correlations between items. Second, the denoising process leverages these correlations to generate intent predictions for the augmented sequence, with cosine similarity used to compute augmented items at each position. Finally, intent supervision signals are constructed by segmenting user interaction sequences and applying clustering algorithms, capturing hidden user intents through contrastive learning from both macro and micro perspectives. Experiments on four public datasets demonstrate the superiority of DMVRec, showing a 7.03% improvement in HR@5 and a 4.53% improvement in NDCG@5 over state-of-the-art baselines.

Key words: sequential recommendation, diffusion augmentation, contrastive learning, multi-view intent