[1] 张惠鹃, 黄钦阳, 胡诗彦, 等. 完全图高阶关系驱动的链接预测[J]. 计算机研究与发展, 2024, 61(7): 1825-1835.
ZHANG H J, HUANG Q Y, HU S Y, et al. Link prediction driven by high-order relations in complete graph[J]. Journal of Computer Research and Development, 2024, 61(7): 1825-1835.
[2] 魏楚元, 袁保杰, 王昌栋. 多层级用户兴趣与多意图融合的下一篮推荐算法[J]. 计算机科学与探索, 2025, 19(3): 749-763.
WEI C Y, YUAN B J, WANG C D. Multi-level user interest and multi-intent fusion for next basket recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 749-763.
[3] BOKA T F, NIU Z D, NEUPANE R B. A survey of sequential recommendation systems: techniques, evaluation, and future directions[J]. Information Systems, 2024, 125: 102427.
[4] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 811-820.
[5] JANNACH D, LUDEWIG M. When recurrent neural networks meet the neighborhood for session-based recommendation[C]//Proceedings of the 11th ACM Conference on Recommender Systems. New York: ACM, 2017: 306-310.
[6] KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206.
[7] SUN F, LIU J, WU J, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1441-1450.
[8] 田志轩, 刘骊, 付晓东, 等. 融合偏好学习和意图建模的个性化服装序列推荐[J/OL]. 计算机工程: 1-10 (2024-09-04) [2024-10-08]. https://doi.org/10.19678/j.issn.1000-3428.0069819.
TIAN Z X, LIU L, FU X D, et al. Personalized seq-uential clothing recommendation combining preference learning and intention modeling[J/OL]. Computer Engineering: 1-10 (2024-09-04) [2024-10-08]. https://doi.org/10.19678/j.issn.10003428. 0069819.
[9] CHEN Y J, LIU Z W, LI J, et al. Intent contrastive learning for sequential recommendation[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2172-2182.
[10] TAN Q Y, ZHANG J W, YAO J C, et al. Sparse-interest network for sequential recommendation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 598-606.
[11] LI X W, SUN A T, ZHAO M K, et al. Multi-intention oriented contrastive learning for sequential recommendation[C]//Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 411-419.
[12] QIN X Y, YUAN H H, ZHAO P P, et al. Intent contrastive learning with cross subsequences for sequential recommendation[C]//Proceedings of the 17th ACM International Conference on Web Search and Data Mining. New York: ACM, 2024: 548-556.
[13] 刘会, 张璇, 杨兵, 等. 用于社交推荐的增强影响扩散模型[J]. 计算机学报, 2023, 46(3): 626-642.
LIU H, ZHANG X, YANG B, et al. An enhanced influence diffusion model for social recommendation[J]. Chinese Journal of Computers, 2023, 46(3): 626-642.
[14] LI J C, ZHAO T, LI J, et al. Coarse-to-fine sparse sequential recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 2082-2086.
[15] MA J X, ZHOU C, YANG H X, et al. Disentangled self-supervision in sequential recommenders[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 483-491.
[16] XIE X, SUN F, LIU Z Y, et al. Contrastive learning for sequential recommendation[C]//Proceedings of the 2022 IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 1259-1273.
[17] LIU Z W, CHEN Y J, LI J, et al. Contrastive self-supervised sequential recommendation with robust augmentation[J]. arXiv:2108.06479, 2021.
[18] QIU R H, HUANG Z, YIN H Z, et al. Contrastive learning for representation degeneration problem in sequential recommendation[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 813-823.
[19] CHEN J Y, ZOU G X, ZHOU P, et al. Sparse enhanced network: an adversarial generation method for robust augmentation in sequential recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(8): 8283-8291.
[20] LIU Z W, FAN Z W, WANG Y, et al. Augmenting sequential recommendation with pseudo-prior items via reversely pre-training transformer[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1608-1612.
[21] LIU Q, YAN F, ZHAO X, et al. Diffusion augmentation for sequential recommendation[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 1576-1586.
[22] 张文龙, 孙福振, 吴相帅, 等. 基于反向延长增强的对抗生成网络推荐算法[J]. 计算机应用研究, 2024, 41(7): 2033-2038.
ZHANG W L, SUN F Z, WU X S, et al. Generative adversarial network recommendation based on reverse extension enhancement[J]. Application Research of Computers, 2024, 41(7): 2033-2038.
[23] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013.
[24] HO J, SALIMANS T. Classifier-free diffusion guidance[J]. arXiv:2207.12598, 2022.
[25] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems, 2020: 6840-6851.
[26] 温民伟, 梅红岩, 袁凤源, 等. 多任务推荐算法研究综述[J]. 计算机科学与探索, 2024, 18(2): 363-377.
WEN M W, MEI H Y, YUAN F Y, et al. Survey of multi-task recommendation algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 363-377.
[27] 王永, 罗陈红, 邓江洲, 等. 基于目标扰动的本地化差分隐私矩阵分解推荐算法[J]. 计算机学报, 2025, 48(2): 451-462.
WANG Y, LUO C H, DENG J Z, et al. Matrix factorization recommendation algorithm based on local differential privacy with objective perturbation[J]. Chinese Journal of Computers, 2025, 48(2): 451-462.
[28] TANG J X, WANG K. Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 565-573.
[29] YUE Z R, WANG Y Q, HE Z K, et al. Linear recurrent units for sequential recommendation[C]//Proceedings of the 17th ACM International Conference on Web Search and Data Mining. New York: ACM, 2024: 930-938. |