[1] XU Y Y, YANG Y B, GHANEM B, et al. Deformable mixer transformer with gating for multi-task learning of dense prediction[J]. arXiv:2308.05721, 2023.
[2] YE H R, XU D. TaskExpert: dynamically assembling multi-task representations with memorial mixture-of-experts[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 21828-21837.
[3] CHEN X J, MOTTAGHI R, LIU X B, et al. Detect what you can: detecting and representing objects using holistic models and body parts[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1971-1978.
[4] SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]//Proceedings of the European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2012: 746-760.
[5] HE Y N, HUANG G S, CHEN S Y, et al. X-Learner: learning cross sources and tasks for universal visual representation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2022: 509-528.
[6] FIFTY C, AMID E, ZHAO Z, et al. Efficiently identifying task groupings for multi-task learning[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 27503-27516.
[7] ZHANG J P, XIE Y T, XIA Y, et al. DoDNet: learning to segment multi-organ and tumors from multiple partially labeled datasets[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1195-1204.
[8] LIU J, ZHANG Y X, CHEN J N, et al. CLIP-driven universal model for organ segmentation and tumor detection[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 21152-21164.
[9] LIU P B, DENG Y, WANG C, et al. Universal segmentation of 33 anatomies[J]. arXiv:2203.02098, 2022.
[10] ZHANG W, ZHONG J, YANG S J, et al. Automated identification and grading system of diabetic retinopathy using deep neural networks[J]. Knowledge-Based Systems, 2019, 175: 12-25.
[11] WU J D, FU R, FANG H H, et al. MedSegDiff: medical image segmentation with diffusion probabilistic model[J]. arXiv:2211.00611, 2022.
[12] DIAO S Y, SU J Z, YANG C Q, et al. Classification and segmentation of OCT images for age-related macular degeneration based on dual guidance networks[J]. Biomedical Signal Processing and Control, 2023, 84: 104810.
[13] SHANG F, FU J, YANG Y, et al. SynFundus: a synthetic fundus images dataset with millions of samples and multi-disease annotations[J]. arXiv:2312.00377, 2023.
[14] ZHOU Y, LI G Q, LI H Q. Automatic cataract classification using deep neural network with discrete state transition[J]. IEEE Transactions on Medical Imaging, 2020, 39(2): 436-446.
[15] SHEN Y X, SHENG B, FANG R G, et al. Domain-invariant interpretable fundus image quality assessment[J]. Medical Image Analysis, 2020, 61: 101654.
[16] VANDENHENDE S, GEORGOULIS S, VAN GANSBEKE W, et al. Multi-task learning for dense prediction tasks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3614-3633.
[17] CHEN Z, BADRINARAYANAN V, LEE C Y, et al. GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks[C]//Proceedings of the International Conference on Machine Learning, 2018: 794-803.
[18] MISRA I, SHRIVASTAVA A, GUPTA A, et al. Cross-stitch networks for multi-task learning[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3994-4003.
[19] ZHANG L, LIU X, GUAN H. AutoMTL: a programming framework for automating efficient multi-task learning[C]//Advances in Neural Information Processing Systems, 2022, 35: 34216-34228.
[20] ARGYRIOU A, EVGENIOU T, PONTIL M. Convex multi-task feature learning[J]. Machine Learning, 2008, 73(3): 243-272.
[21] LIU S K, JAMES S, DAVISON A J, et al. Auto-lambda: disentangling dynamic task relationships[J]. arXiv:2202.
03091, 2022.
[22] CAO K D, YOU J X, LESKOVEC J. Relational multi-task learning: modeling relations between data and tasks[J]. arXiv:2303.07666, 2023.
[23] WANG Z R, TSVETKOV Y, FIRAT O, et al. Gradient vaccine: investigating and improving multi-task optimization in massively multilingual models[J]. arXiv:2010.05874, 2020.
[24] NAVON A, SHAMSIAN A, ACHITUVE I, et al. Multi-task learning as a bargaining game[J]. arXiv:2202.01017, 2022.
[25] CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7482-7491.
[26] LIU S K, JOHNS E, DAVISON A J. End-to-end multi-task learning with attention[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1871-1880.
[27] JU L, WANG X, WANG L, et al. Improving medical images classification with label noise using dual-uncertainty estimation[J]. IEEE Transactions on Medical Imaging, 2022, 41(6): 1533-1546.
[28] LI T, BO W, HU C Y, et al. Applications of deep learning in fundus images: a review[J]. Medical Image Analysis, 2021, 69: 101971.
[29] WANG X, JU L, ZHAO X, et al. Retinal abnormalities recognition using regional multitask learning[C]//Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2019: 30-38.
[30] SINTHANAYOTHIN C, BOYCE J F, COOK H L, et al. Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images[J]. British Journal of Ophthalmology, 1999, 83(8): 902-910.
[31] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[32] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[33] VANDENHENDE S, GEORGOULIS S, VAN GOOL L. MTI-net: multi-scale task interaction networks for multi-task learning[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2020: 527-543.
[34] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[35] KIM D, TSAI Y H, SUH Y, et al. Learning semantic segmentation from multiple datasets with label shifts[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2022: 20-36.
[36] ZHANG Y S, YE X, WU W H, et al. Morphological rule-constrained object detection of key structures in infant fundus image[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2024, 21(4): 1031-1041.
[37] LI L, XU M, WANG X F, et al. Attention based glaucoma detection: a large-scale database and CNN model[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10571-10580.
[38] LI T, GAO Y Q, WANG K, et al. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening[J]. Information Sciences, 2019, 501: 511-522.
[39] CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28: 41-75.
[40] MA J Q, ZHAO Z, YI X Y, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1930-1939.
[41] STANDLEY T, ZAMIR A, CHEN D, et al. Which tasks should be learned together in multi-task learning?[C]//Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 9120-9132.
[42] LIU B, LIU X C, JIN X J, et al. Conflict-averse gradient descent for multi-task learning[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 18878-18890.
[43] XU D, OUYANG W L, WANG X G, et al. PAD-net: multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 675-684.
[44] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 618-626.
[45] OPENAI. GPT-4 technical report[J]. arXiv:2303.08774, 2023.
[46] KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[J]. arXiv:2304.02643, 2023. |