[1] 许凯, 邓超. 基于改进YOLOv3的安全帽佩戴识别算法[J]. 激光与光电子学进展, 2021, 58(6): 300-307.
XU K, DENG C. Research on helmet wear identification based on improved YOLOv3[J]. Laser & Optoelectronics Progress, 2021, 58(6): 300-307.
[2] KELM A, LAU?AT L, MEINS-BECKER A, et al. Mobile passive radio frequency identification (RFID) portal for auto-mated and rapid control of personal protective equipment (PPE) on construction sites[J]. Automation in Construction, 2013, 36: 38-52.
[3] BARRO-TORRES S, FERNáNDEZ-CARAMéS T M, PéREZ-IGLESIAS H J, et al. Real-time personal protective equipment monitoring system[J]. Computer Communications, 2012, 36(1): 42-50.
[4] RUBAIYAT A H M, TOMA T T, KALANTARI-KHANDANI M, et al. Automatic detection of helmet uses for construction safety[C]//Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops, 2016: 135-142.
[5] SHRESTHA K, SHRESTHA P P, BAJRACHARYA D, et al. Hard-hat detection for construction safety visualization[J]. Journal of Construction Engineering, 2015(1): 1-8.
[6] WARANUSAST R, BUNDON N, TIM TONG V, et al. Machine vision techniques for motorcycle safety helmet detection[C]//Proceedings of the 28th International Conference on Image and Vision Computing, New Zealand, 2013: 35-40.
[7] DOUNGMALA P, KLUBSUWAN K. Helmet wearing detection in Thailand using Haar like feature and circle Hough transform on image processing[C]//Proceedings of the 2016 IEEE International Conference on Computer and Information Technology, 2016: 611-614.
[8] JIA J, BAO Q, TANG H. Method for detecting safety helmet based on deformable part model[J]. Application Research of Computers, 2016, 33(3): 953-956.
[9] LI K, ZHAO X, BIAN J, et al. Automatic safety helmet wearing detection[C]//Proceedings of the 7th IEEE Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Honolulu, 2017: 617-622.
[10] WU H, ZHAO J. Automated visual helmet identification based on deep convolutional neural networks[J]. Computer Aided Chemical Engineering, 2018, 44: 2299-2304.
[11] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015: 1440-1448.
[12] LONG X, CUI W, ZHENG Z. Safety helmet wearing detec-tion based on deep learning[C]//Proceedings of the 3rd IEEE Information Technology, Networking, Electronic and Automation Control Conference, 2019: 2495-2499.
[13] WU D M, WANG H, LI J. Safety helmet detection and identification based on improved faster R-CNN[J]. Information Technology & Informatization, 2020, 1: 17-20.
[14] XU X F, ZHAO W F, ZOU H Q, et al. Detection algorithm of safety helmet wear based on MobileNet-SSD[J]. Computer Engineering, 2021, 47: 298-305.
[15] DENG B Y, LEI X C, YE M. Safety helmet detection method based on YOLOv4[C]//Proceedings of the 16th IEEE International Conference on Computational Intelligence and Security, 2020: 155-158.
[16] SADIQ M, MASOOD S, PAL O. FD-YOLOv5: a fuzzy image enhancement based robust object detection model for safety helmet detection[J]. International Journal of Fuzzy Systems, 2022, 24(5): 2600-2616.
[17] BAI Y, ZHANG Y, DING M, et al. SOD-MTGAN: small object detection via multi-task generative adversarial network[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 206-221.
[18] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[19] DENG C, WANG M, LIU L, et al. Extended feature pyramid network for small object detection[J]. IEEE Transactions on Multimedia, 2021, 24: 1968-1979.
[20] MIN K, LEE G H, LEE S W. Attentional feature pyramid network for small object detection[J]. Neural Networks, 2022, 155: 439-450.
[21] CHEN S, ZHAO J, ZHOU Y, et al. Info-FPN: an informative feature pyramid network for object detection in remote sensing images[J]. Expert Systems with Applications, 2023, 214: 119-132.
[22] LUO Y, CAO X, ZHANG J, et al. CE-FPN: enhancing channel information for object detection[J]. Multimedia Tools and Applications, 2022, 81(21): 30685-30704.
[23] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[24] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Pro-ceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[25] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[26] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[27] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[28] 孟繁星, 于瓅. 基于YOLOv5-EA的交通标志识别[J]. 辽宁工业大学学报 (自然科学版), 2022, 42(5): 303-310.
MENG F X, YU L. Traffic sign recognition based on YOLOv5-EA[J]. Journal of Liaoning University of Technology (Natural Science Edition), 2022, 42(5): 303-310.
[29] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[30] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475. |