[1] 李彤, 申俊楠. 突发事件网络舆情的演进规律及应用研究[J]. 信息与管理研究, 2018, 3(1): 88-95.
LI T, SHEN J N. A research on evolution rule and its application in online public opinion in emergency[J]. Journal of Information and Management, 2018, 3(1): 88-95.
[2] HU R, RUI L, ZENG P, et al. Text sentiment analysis: a review[C]//Proceedings of the 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, Dec 7-10, 2018: 2283-2288.
[3] WANG Z Y, CHENG J P, WANG H X. Short text understanding: a survey[J]. Journal of Computer Research and Development, 2016, 53(2): 262-269.
[4] 王浩畅, 孙铭泽. 基于ERNIE-RCNN模型的中文短文本分类[J]. 计算机技术与发展, 2022, 32(6): 28-34.
WANG H C, SUN M Z. Chinese short text classification based on ERNIE-RCNN model[J]. Computer Technology and Development, 2022, 32(6): 28-34.
[5] 郝婷, 王薇. 融合Bert和BiLSTM的中文短文本分类研究[J]. 软件工程, 2023, 26(3): 58-63.
HAO T, WANG W. Research on Chinese short text classification based on bert and Bi-LSTM[J]. Software Engineering, 2023, 26(3): 58-63.
[6] 李芸, 潘雅丽, 肖冬. 基于改进BERT-BiGRU模型的文本情感分类研究[J]. 电子技术应用, 2023, 49(2): 9-14.
LI Y, PAN Y L, XIAO D. Research on text emotion classification based on improved BERT-BiGRU model [J]. Application of Electronic Technique, 2023, 49(2): 9-14.
[7] HASSAN A, MAHMOOD A. Convolutional recurrent deep learning model for sentence classification[J]. IEEE Access, 2018, 6:13949-13957.
[8] BATBAATAR E, LI M, RYU K H. Semantic-emotion neural network for emotion recognition from text[J]. IEEE Access, 2019, 7:111866-111878.
[9] JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 31-Aug 4, 2017: 562-570.
[10] 王勇, 何养明, 邹辉, 等. WordNG-Vec:一种应用于CNN 文本分类的词向量模型[J]. 小型微型计算机系统, 2019, 40(3): 499-502.
WANG Y, HE Y M, ZOU H, et al. WordNG-Vec: a word vector model applied to CNN text classification[J]. Journal of Chinese Computer Systems, 2019, 40(3): 499-502.
[11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
[12] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota, Jun 2-7, 2019: 4171-4186.
[13] SHEN Z Q, JU T. Research on tendency analysis of micro blog comments based on BERT and BISTM[J]. Information Studies: Theory 8. Application, 2020, 43(8): 173-177.
[14] WANG Q Y, ZHU G L, ZHANG S X, et al. Extending emotional lexicon for improving the classification accuracy of Chinese film reviews[J]. Connection Science, 2021, 33(2): 153-172.
[15] CAO Z X, ZHOU Y M, YANG A M, et al. Deep transfer learning mechanism for fine grained cross-domain sentiment classification[J]. Connection Science, 2021, 33(2): 911-928.
[16] ASGHAR M Z, SUBHAN F, LMRAN M, et al. Performance evaluation of supervised machine learning techniques for efficient detection of emotions from online content[J]. CMC-Computers Materials & Continua, 2019, 63(3): 1093-1118.
[17] AURANGZEB K, AYUB N, ALHUSSEIN M. Aspect based multi-labeling using SVM based ensembler[J]. IEEE Access, 2021, 9: 26026-26040.
[18] ATMAJA B T, AKAGI M, Two stage dimensional emotion recognition by fusing predictions of acoustic and text networks using SVM[J]. Speech Communication, 2021, 126: 9-21.
[19] YOU Y. HE Y, RAJBHANDARI S, et al. Fast LSTM by dynamic decomposition on cloud and distributed systems[J]. Knowledge and Information Systems, 2020, 62(11): 4169-4197.
[20] WU S T, LIU Y L, ZOU Z R, et al. BILSTM: stock price prediction based on multiple data sources and sentiment analysis[J]. Connection Science, 2022, 34(1): 44-62.
[21] ZHAO J, DALIN Z, XIAO, Y, et al. User personality prediction based on topic preference and sentiment analysis using LSTM model[J]. Pattern Recognition Letters, 2020, 138: 397-402.
[22] LIN Z, WANG L, CUI X, et al. Fast sentiment analysis algorithm based on double mode fusion[J]. Computer Systems Science and Engineering, 2021, 36(1): 175-188.
[23] BAZIOTIS C, PELEKIS N, DOULKERIDIS C. Deep LSTM with attention for message-level and topic-based sentiment analysis[C]//Proceedings of the 11th International Workshop on Semantic Evaluation, Vancouver, Aug 3-4, 2017: 747-754.
[24] 黄山成, 韩东红, 乔百友, 等. 融合ERNIE2.0-BiLSTM-Attention的隐式情感分析方法[J]小型微型计算机系统, 2021, 42(12): 2485-2490.
HUANG S C, HAN D H, QIAO B Y, et al. Implicit sentiment analysis method based on ERNIE2.0-BiLSTM-Attention[J]. Journal of Chinese Computer Systems, 2021, 42(12): 2485-2490.
[25] 周宁, 钟娜, 靳高雅, 等. 基于混合词嵌入的双通道注意力网络中文文本情感分析[J]. 数据分析与知识发现, 2023, 7(3): 58-68.
ZHOU N, ZHONG N, JIN G Y, et al. Chinese text sentiment analysis based on dual channel attention network with hybrid word embedding[J]. Data Analysis and Knowledge Discovery, 2023, 7(3): 58-68.
[26] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv:1409.0473, 2014.
[27] CHENG S Y, GUO Z Y, LIU W, et al. Research on multi-granularity sentence interaction natural language inference based on attention mechanism[J]. Journal of Chinese Computer Systems, 2019, 40(6): 1215-1220.
[28] CUI Y M, CHE W X, LIU T, et al. Pre-training with whole word masking for chinese bert[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3504-3514.
[29] ZHANG S X, YU H B, ZHU G L. An emotional classification method of Chinese short comment text based on ELECTRA[J]. Connection Science, 2022, 34(1): 254-273.
[30] CUI Y M, CHE W X, LIU T, et al. LERT: a linguistically-motivated pre-trained language model[EB/OL].(2022-11-11) [2024-03-20]. https://arxiv.org/abs/2211.05344. |