[1] DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[2] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9.
[3] RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. The Journal of Machine Learning Research, 2020, 21(1): 5485-5551.
[4] SUN Z, LI X, SUN X, et al. Chinese pretraining enhanced by glyph and pinyin information[J]. arXiv:2106.16038,2021.
[5] 蔡坤钊, 曾碧卿, 陈鹏飞. GAT: 用于自然语言理解的基于全局的对抗训练[J]. 中文信息学报, 2023, 37(3): 27-35.
CAI K Z, ZENG B Q, CHEN P F. GAT: global-based adversarial training for natural language understanding[J]. Journal of Chinese Information Processing, 2023, 37(3): 27-35.
[6] RAZUMOVSKAIA E, VULI? I, KORHONEN A. Data augmentation and learned layer aggregation for improved multilingual language understanding in dialogue[C]//Proceedings of the Findings of the Association for Computational Linguistics (ACL 2022), 2022: 2017-2033.
[7] 马式琨, 滕冲, 李霏, 等. 基于领域特征提纯的多领域文本分类[J]. 中文信息学报, 2022, 36(8): 92-100.
MA S K, TENG C, LI F, et al. Multi-domain text classification based on domain feature refinement[J]. Journal of Chinese Information Processing, 2022, 36(8): 92-100.
[8] LUO Q, LIU L, LIN Y, et al. Don’t miss the labels: label-semantic augmented meta-learner for few-shot text classification[C]//Proceedings of the Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021), 2021: 2773-2782.
[9] 孙斌, 常开志, 李树涛. 面向医疗咨询的复杂问句意图智能理解[J]. 中文信息学报, 2023, 37(1): 112-120.
SUN B, CHANG K Z, LI S T. Complex question intention understanding for medical consultation[J]. Journal of Chinese Information Processing, 2023, 37(1): 112-120.
[10] ZHAO Y, HUANG J, HU W, et al. Implicit relation linking for question answering over knowledge graph[C]//Proceedings of the Findings of the Association for Computational Linguistics (ACL 2022), 2022: 3956-3968.
[11] SUN Y, WANG S, LI Y, et al. Ernie: enhanced representation through knowledge integration[J]. arXiv:1904.09223, 2019.
[12] SUN Y, WANG S, LI Y, et al. Ernie 2.0: a continual pre-training framework for language understanding[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 8968-8975.
[13] CUI Y, CHE W, LIU T, et al. Pre-training with whole word masking for Chinese bert[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3504-3514.
[14] MA W, CUI Y, SI C, et al. CharBERT: character-aware pre-trained language model[J]. arXiv:2011.01513, 2020.
[15] 张朋捷, 王磊, 马博, 等. 基于预训练语言模型的维吾尔语事件抽取[J]. 计算机工程与设计, 2023, 44(5): 1487-1494.
ZHANG P J, WANG L, MA B, et al. Uyghur event extraction based on pre-trained language model[J]. Computer Engineering and Design, 2023, 44(5): 1487-1494.
[16] 罗凯昂, 哈里旦木·阿布都克里木, 刘畅, 等. 融合剪枝和多语微调的黏着语命名实体识别[J]. 计算机工程与应用, 2023, 59(24): 121-130.
LUO K A, ABUDUKELIMU H, LIU C, et al. Agglutinative languages named entity recognition based on pruner and multilingual fine-tuning[J]. Computer Engineering and Applications, 2023, 59(24): 121-130.
[17] 吴都. 基于深度神经网络的蒙古文命名实体识别研究[D]. 北京: 北京交通大学, 2021.
WU D. Research on mongolian named entity recognition based on deep neural network[D]. Beijing: Beijing Jiaotong University, 2021.
[18] 王炜华. 蒙古文命名实体识别研究[D]. 呼和浩特: 内蒙古大学, 2019.
WANG W H. Mongolian named entity recognition[D]. Hohhot: Inner Mongolia University, 2019.
[19] 胥桂仙, 刘兰寅, 张廷, 等. 基于预训练模型和图神经网络的藏文文本分类研究[J]. 东北师大学报 (自然科学版), 2023, 55(1): 52-64.
XU G X, LIU L Y, ZHANG T, et al. Tibetan text classification based on pre-training model and graph neural network[J]. Journal of Northeast Normal University (Natural Science Edition), 2023, 55(1): 52-64.
[20] 于韬, 尼玛次仁, 拥措, 等. 基于藏文Albert预训练语言模型的图采样与聚合实体关系抽取[J]. 中文信息学报, 2022, 36(10): 63-72.
YU T, NIMA C R, YONG C, et al. Graph sampling and aggregated entity relation extraction based on Tibetan Albert pre-trained language model[J]. Journal of Chinese Information Processing, 2022, 36(10): 63-72.
[21] 头旦才让, 仁青东主, 尼玛扎西. 基于CRF的藏文地名识别技术研究[J]. 计算机工程与应用, 2019, 55(18): 111-115.
THUPTEN T, RINCHEN D, NYIMA T. Research on Tibetan location name recognition technology under CRF[J]. Computer Engineering and Applications, 2019, 55(18): 111-115.
[22] 华却才让, 姜文斌, 赵海兴, 等. 基于感知机模型藏文命名实体识别[J]. 计算机工程与应用, 2014, 50(15): 172-176.
HUA Q C R, JIANG W B, ZHAO H X, et al. Tibetan name entity recognition with perceptron model[J]. Computer Engineering and Applications, 2014, 50(15): 172-176.
[23] 洛桑嘎登, 杨媛媛, 赵小兵. 基于知识融合的CRFs藏文分词系统[J]. 中文信息学报, 2015, 29(6): 213-219.
LUOBSANG K, YANG Y Y, ZHAO X B. Tibetan automatic word segmentation based on conditional random fields and knowledge fusion[J]. Journal of Chinese Information Processing, 2015, 29(6): 213-219.
[24] 洛桑嘎登, 群诺, 索南尖措, 等. 融合音节部件特征的藏文命名实体识别方法[J]. 厦门大学学报 (自然科学版), 2022, 61(4): 624-629.
LUOSANG G, QUN N, SUONAN J, et al. Fusion of syllable component features for Tibetan named entity recognition[J]. Journal of Xiamen University (Natural Science), 2022, 61(4): 624-629.
[25] ZHANG Y, WANG J, YU L C, et al. MA-BERT: learning representation by incorporating multi-attribute knowledge in transformers[C]//Proceedings of the Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021), 2021: 2338-2343.
[26] LIU Z, LI F, LI G, et al. EBERT: efficient BERT inference with dynamic structured pruning[C]//Proceedings of the Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021), 2021: 4814-4823.
[27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[28] LIU Y, OTT M, GOYAL N, et al. Roberta: a robustly optimized bert pretraining approach[J]. arXiv:1907.11692, 2019.
[29] GONG H Y, GUPTA K, JAIN A, et al. IlliniMet: illinois system for metaphor detection with contextual and linguistic information[C]//Proceedings of the Second Workshop on Figurative Language Processing, 2020: 146.
[30] ZOU H, YANG J, WU X. Unsupervised energy-based adversarial domain adaptation for cross-domain text classification[C]//Proceedings of the Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021), 2021: 1208-1218.
[31] YANG Z, DAI Z, YANG Y, et al. XLNet: generalized autoregressive pretraining for language understanding[C]//Advances in Neural Information Processing Systems, 2019.
[32] HAMBORG F, DONNAY K, MERLO P. NewsMTSC: a dataset for (multi-) target-dependent sentiment classification in political news articles[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, 2021.
[33] ZANZOTTO F M, SANTILLI A, RANALDI L, et al. KERMIT: complementing transformer architectures with encoders of explicit syntactic interpretations[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020: 256-267.
[34] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems, 2020: 1877-1901.
[35] ETHAYARAJH K. How contextual are contextualized word representations? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings[J]. arXiv:1909.00512, 2019.
[36] FLORIDI L, CHIRIATTI M. GPT-3: its nature, scope, limits, and consequences[J]. Minds and Machines, 2020, 30: 681-694.
[37] SHEANG K C, SAGGION H. Controllable sentence simplification with a unified text-to-text transfer transformer[C]//Proceedings of the 14th International Conference on Natural Language Generation (INLG), Sep 20-24 2021, Aberdeen, Scotland, UK. Aberdeen: Association for Computational Linguistics, 2021.
[38] 朱宇雷, 德吉卡卓, 群诺, 等. 基于图神经网络结合预训练模型的藏文短文本情感分析研究[J]. 中文信息学报, 2023, 37(2): 71-79.
ZHU Y L, DEJI K, QNU N, et al. Research on sentiment analysis of Tibetan short texts based on graph neural network and pre-training model[J]. Journal of Chinese Information Processing, 2023, 37(2): 71-79.
[39] 安波, 龙从军. 基于预训练语言模型的藏文文本分类[J]. 中文信息学报, 2022, 36(12): 85-93.
AN B, LONG C J. Tibetan text classification based on pre-trained language model[J]. Journal of Chinese Information Processing, 2022, 36(12): 85-93.
[40] 李亮. 基于ALBERT的藏文预训练模型及其应用[D]. 兰州: 兰州大学, 2020.
LI L. Tibetan pre-training model and its application based on ALBERT[D]. Lanzhou: Lanzhou University, 2020.
[41] 国家技术监督局. 中华人民共和国国家标准 信息技术 信息交换用 藏文编码字符集 基本集[S]. 北京: 中国标准出版社, 1997.
State Bureau of Technical Supervision. National standards of the People’s Republic of China. Information technology. Basic set of Tibetan coded characters for information interchange[S]. Beijing: China Standard Press, 1997.
[42] 桑塔, 达哇彭措. 信息处理用藏文字丁统计[J]. 科技信息, 2010(29): 430.
SANG T, DAWA P. Statistics of Tibetan characters used in information processing[J]. Science and Technology Information, 2010(29): 430. |