计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (2): 12-21.DOI: 10.3778/j.issn.1002-8331.2209-0025
林令德,刘纳,王正安
LIN Lingde, LIU Na, WANG Zheng'an
摘要: 文本挖掘是数据挖掘的一个分支学科,涵盖多种技术,其中自然语言处理技术是文本挖掘的核心工具之一,旨在帮助用户从海量数据中获取有用的信息。近年来,预训练模型对自然语言处理的研究和发展有重要的推动作用,预训练模型的微调方法也成为重要的研究领域。根据近年来预训练模型微调方法的相关文献,选择目前主流的Adapter与Prompt微调方法进行介绍。对自然语言处理的发展脉络进行简要梳理,分析目前预训练模型微调存在的问题与不足;介绍Adapter与Prompt两类微调方法,对两个研究方向中经典方法进行介绍,并从优缺点和性能等方面进行详细分析;进行总结归纳,阐述目前预训练模型的微调方法存在的局限性并讨论未来发展方向。