[1] LOWE D G. Distinctive image features from scale-invariant key-points[J]. International Journal of Computer Vision, 2004, 60(2) : 91-110.
[2] DALAL N. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.
[3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
[4] GIRSHICK R. Fast R-CNN[J]. arXiv:1504.08083, 2015.
[5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[J]. arXiv:1506.02640, 2016.
[7] FARHADI A, REDMON J. YOLO9000: better, faster, stronger[J]. arXiv:1612.08242, 2016.
[8] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[9] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. ?arXiv:2004.10934, 2020.
[10] BERG A C, FU C Y, SZEGEDY C, et al. SSD: single shot multibox detector[J]. arXiv:1512.02325, 2015.
[11] JAWAHARLALNEHRU A, SAMBANDHAM T, SEKAR V, et al. Target object detection from unmanned aerial vehicle (UAV) images based on improved YOLO algorithm[J]. Electronics, 2022, 11(15): 2343.
[12] 朱瑞鑫, 杨福兴. 运动场景下改进YOLOv5小目标检测算法[J]. 计算机工程与应用, 2023, 59(10): 196-203.
ZHU R X, YANG F X. Improved YOLOv5 small object detection algorithm in motion scenes[J]. Computer Engineering and Applications, 2023, 59(10) : 196-203.
[13] HAN Y Z, HUANG G, SONG S J, et al. Dynamic neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7436-7456.
[14] DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
[15] HUANG G, LIU Z, LAURENS V D M, et al. Densely con nected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017.
[16] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017.
[17] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017.
[18] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016.
[19] WOO S H, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018.
[20] LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[J]. arXiv:2112.05561, 2021.
[21] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[22] WANG Q, WU B, ZHU P, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
[23] YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning, 2021.
[24] CHEN J, KAO S H, HE H, et al. Run, dont walk: chasing higher FLOPS for faster neural networks[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
[25] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662.
[26] CHEN Z, YANG C, LI Q, et al. Disentangle your dense object detector[J]. arXiv:2107.02963, 2021.
[27] ZHOU X, WANG D, KRHENBüHL P. Objects as points[J]. arXiv:1904.07850, 2019.
[28] REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[J]. arXiv:2305.09972, 2023.
[29] 陈卫彪, 贾小军, 朱响斌, 等. 基于DSM-YOLO v5的无人机航拍图像目标检测[J]. 计算机工程与应用, 2023, 59(18): 226-233.
CHEN W B, JIA X J, ZHU X B, et al. Target detection for UAV image based on DSM-YOLO v5[J]. Computer Engineering and Applications, 2023, 59(18): 226-233. |