[1] KANG L W, LIN C W, FU Y H. Automatic single-image-based rain streaks removal via image decomposition[J].IEEE Transactions on Image Processing, 2011, 21(4): 1742-1755.
[2] LUO Y, XU Y, JI H. Removing rain from a single image via discriminative sparse coding[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 3397-3405.
[3] LI Y, TAN R T, GUO X J, et al. Rain streak removal using layer priors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2736-2744.
[4] 刘腊梅, 王晓娜, 刘万军, 等. 融合转置卷积与深度残差图像语义分割方法[J]. 计算机科学与探索, 2022, 16(9): 2132-2142.
LIU L M, WANG X N, LIU W J, et al. Image semantic segmentation method with fusion of transposed convolution and deep residual[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2132-2142.
[5] 欧阳柳, 贺禧, 瞿绍军. 全卷积注意力机制神经网络的图像语义分割[J]. 计算机科学与探索, 2022, 16(5): 1136-1145.
OU Y L, HE X, QU S J. Fully convolutional neural network with attention module for semantic segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1136-1145.
[6] 张哲晗, 方薇, 杜丽丽, 等. 基于编码-解码卷积神经网络的遥感图像语义分割[J]. 光学学报, 2020, 40(3): 40-49.
ZHANG Z H, FANG W, DU L L, et al. Semantic segmentation of remote sensing image based on encoder-decoder convolutional neural network[J]. Acta Optica Sinica, 2020, 40(3): 40-49.
[7] WANG H, XIE Q, ZHAO Q, et al. A model-driven deep neural network for single image rain removal[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3103-3112.
[8] WANG T Y, YANG X, XU K, et al. Spatial attentive single-image deraining with a high quality real rain dataset[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12270-12279.
[9] WANG C, XING X Y, WU Y T, et al. DCSFN: deep cross-scale fusion network for single image rain removal[C]//Proceedings of the 28th ACM International Conference on Multimedia, 2020: 1643-1651.
[10] YANG W H, LIU J Y, YANG S, et al. Scale-free single image deraining via visibility-enhanced recurrent wavelet learning[J]. IEEE Transactions on Image Processing, 2019, 28(6): 2948-2961.
[11] ZHAO J, XIE J Y, XIONG R Q, et al. Pyramid convolutional network for single image deraining[C]//CVPR Workshops, 2019: 9-16.
[12] YI Q S, LI J C, DAI Q Y, et al. Structure-preserving deraining with residue channel prior guidance[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 4238-4247.
[13] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[14] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16 × 16 words: transformers for image recognition at scale[EB/OL].(2021-06-03)[2022-09-20]. https://arxiv.org/pdf/2010.11929.pdf.
[15] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[16] LIU Z, HU H, LIN Y T, et al. Swin transformer v2: scaling up capacity and resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 12009-12019.
[17] CHEN H T, WANG Y H, GUO T Y, et al. Pre-trained image processing transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12299-12310.
[18] LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1833-1844.
[19] WANG Z D, CUN X D, BAO J M, et al. Uformer: a general u-shaped transformer for image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 17683-17693.
[20] ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5728-5739.
[21] XIAO J, FU X Y, LIU A P, et al. Image de-raining transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 12978-12995.
[22] PARK N, KIM S. How do vision transformers work?[EB/OL].(2022-06-08)[2022-09-20]. https://arxiv.org/pdf/2202. 06709.pdf.
[23] SI C Y, YU W H, ZHOU P, et al. Inception Transformer [EB/OL].(2022-05-26)[2022-09-20]. https://arxiv.org/pdf/2205.12956.pdf.
[24] LIU B, LIU W. The lifting factorization of 2D 4-channel nonseparable wavelet transforms[J]. Information Sciences, 2018, 456: 113-130.
[25] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[26] JIANG K, WANG Z Y, YI P, et al. Multi-scale progressive fusion network for single image deraining[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8346-8355.
[27] 刘斌, 彭嘉雄. 基于四通道不可分加性小波的多光谱图像融合[J]. 计算机学报, 2009, 32(2): 350-356.
LIU B, PENG J X. Fusion method of multi-spectral image and panchromatic image based on four channels non-sperable additive wavelets[J]. Chinese Journal of Computers, 2009, 32(2): 350-356.
[28] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[29] YANG W H, TAN R T, FENG J S, et al. Deep joint rain detection and removal from a single image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1357-1366.
[30] ZHANG H, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 695-704.
[31] ZHANG H, SINDAGI V, PATEL V M. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11): 3943-3956.
[32] VICENTE S, CARREIRA J, AGAPITO L, et al. Reconstructing pascal voc[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 41-48.
[33] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL].(2017-01-30)[2022-09-20].https://arxiv.org/pdf/1412.6980.pdf.
[34] LI X, WU J L, LIN Z C, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 254-269.
[35] REN D W, ZUO W M, HU Q H, et al. Progressive image deraining networks: a better and simpler baseline[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3937-3946.
[36] REN D W, SHANG W, ZHU P F, et al. Single image deraining using bilateral recurrent network[J]. IEEE Transactions on Image Processing, 2020, 29: 6852-6863.
[37] GUO Q, SUN J Y, JUEFEI-XU F, et al. Efficientderain: learning pixel-wise dilation filtering for high-efficiency single-image deraining[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 1487-1495.
[38] CUI X, WANG C, REN D W, et al. Semi-supervised image deraining using knowledge distillation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(12): 8327-8341.
[39] LI Y Z, MONNO Y, OKUTOMI M. Single image deraining network with rain embedding consistency and layered LSTM[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 4060-4069.
[40] SANDLER M, HOWARD A, ZHU M L, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[41] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818.
|