[1] ADAM P, CAHYONO E, MUKHSAR, et al. Statistical analysis on the effect of exchange rate on stock price in Indonesia: an application of ARDL and IGARCH models[J]. Journal of Physics: Conference Series, 2021, 1899: 012117.
[2] DAVID F N, WHITTLE P. Hypothesis testing in time series analysis[J]. Biometrika Trust, 1952, 39(1): 213-214.
[3] BOX G E, JENKINS G M. Time series analysis: forecasting and control [J]. Journal of Time, 1976, 31(4): 238-242.
[4] 闫政旭, 秦超, 宋刚. 基于Pearson特征选择的随机森林模型股票价格预测[J]. 计算机工程与应用, 2021, 57(15): 286-296.
YAN Z X, QIN C, SONG G. Stock price prediction of random forest model based on Pearson feature selection[J]. Computer Engineering and Applications, 2021, 57(15): 286-296.
[5] 张磊. 基于支持向量机的股票市场趋势分析及预测研究[D]. 南京: 南京邮电大学, 2020.
ZHANG L. Stock market trend analysis and prediction research based on support vector machine[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
[6] 裴大卫, 朱明. 基于多因子与多变量长短期记忆网络的股票价格预测[J]. 计算机系统应用, 2019, 28(8): 30-38.
PEI D W, ZHU M. Stock price prediction based on multi-factor and multivariate long short-term memory network[J]. Computer Systems and Applications, 2019, 28(8): 30-38.
[7] 赵红蕊, 薛雷. 基于LSTM-CNN-CBAM模型的股票预测研究[J]. 计算机工程与应用, 2021, 57(3): 203-207.
ZHAO H R, XUE L. Research on stock prediction based on LSTM-CNN-CBAM model[J]. Computer Engineering and Applications, 2021, 57(3): 203-207.
[8] PODOBNIK B, STANLEY H E. Detrended cross-correlation analysis: a new method for analyzing two non-stationary time series[J]. Physical Review Letters, 2008, 100(8): 084102.
[9] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv: 1609. 02907, 2016.
[10] CHAI D, WANG L, YANG Q. Bike flow prediction with multi-graph convolutional networks[C]//Proceedings of the 26th ACM SIGSPATIAL International Conference, 2018.
[11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017.
[12] LENG Z, TAN M, LIU C, et al. Polyloss: a polynomial expansion perspective of classification loss functions[J]. arXiv: 2204. 12511, 2022.
[13] 石陆魁, 秦志娇, 闫会强. 基于最小方差的股市拐点预测方法[J]. 计算机应用研究, 2017, 34(11): 3373-3378.
SHI L K, QIN Z J, YAN H Q. Stock market inflection point prediction method based on minimum variance[J]. Application Research of Computers, 2017, 34(11): 3373-3378.
[14] FENG F, CHEN H, HE X, et al. Enhancing stock movement prediction with adversarial training[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 5843-5849.
[15] 田红丽, 杨莹莹, 闫会强. 结合缠论和深度学习的股价拐点预测研究[J]. 计算机工程与应用, 2022, 58(16): 319-325.
TIAN H L, YANG Y Y, YAN H Q. Research on stock price inflection point prediction combining entanglement theory and deep learning[J]. Computer Engineering and Applications, 2022, 58(16): 319-325. |