[1] 王照乾, 孔韦韦, 滕金保, 等. DenseNet生成对抗网络低照度图像增强方法[J]. 计算机工程与应用, 2022, 58(8): 214-220.
WANG Z Q, KONG W W, TENG J B, et al. DenseNet generative adversarial network low-light image enhancement method[J]. Computer Engineering and Applications, 2022, 58(8): 214-220.
[2] LI C, GUO C, HAN L H, et al. Low-light image and video enhancement using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9396-9416.
[3] DONG X, XU W, MIAO Z, et al. Abandoning the Bayer-filter to see in the dark[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 17431-17440.
[4] 卫依雪, 周冬明, 王长城, 等. 结合多分支结构和U-net的低照度图像增强[J]. 计算机工程与应用, 2022, 58(12): 199-208.
WEI Y X, ZHOU D M, WANG C C, et al. Low-light image enhancement combining multi-branch structure and U-net [J]. Computer Engineering and Applications, 2022, 58(12): 199-208.
[5] 祖佳贞, 周永霞, 陈乐. 结合注意力的双分支残差低光照图像增强[J]. 计算机应用, 2023, 43(4): 1240-1247.
ZU J Z, ZHOU Y X, CHEN L. Double branch residual low light image enhancement combined with attention[J]. Journal of Computer Applications, 2023, 43(4): 1240-1247.
[6] IBRAHIM H, KONG N S P. Brightness preserving dynamic histogram equalization for image contrast enhancement[J]. IEEE Transactions on Consumer Electronics,?2007, 53(4): 1752-1758.
[7] WANG S, ZHENG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538-3548.
[8] JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-462.
[9] JOBSON D J, RAHMAN Z, WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976.
[10] LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662.
[11] WANG W, WEI C, YANG W, et al. GLADNet: low-light enhancement network with global awareness[C]//Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition, 2018: 751-755.
[12] LV F, LU F, WU J, et al. MBLLEN: low-light image/video enhancement using CNNs[C]//British Machine Vision Conference 2018, Newcastle, 2018: 220.
[13] WEI C, WANG W, YANG W, et al. Deep Retinex decomposition for low-light enhancement[J]. arXiv:1808.04560, 2018.
[14] WU W, WENG J, ZHANG P, et al. URetinex-Net: retinex-based deep unfolding network for low-light image enhancement[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5901-5910.
[15] WANG R, ZHANG Q, FU C W, et al. Underexposed photo enhancement using deep illumination estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 6849-6857.
[16] WANG L W, LIU Z S, SIU W C, et al. Lightening network for low-light image enhancement[J]. IEEE Transactions on Image Processing, 2020, 29: 7984-7996.
[17] JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349.
[18] GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1780-1789.
[19] CHEN Z, LIANG Y, DU M. Attention based broadly self-guided network for low light image enhancement[J]. arXiv: 2112.06226, 2021.
[20] SARDY S, TSENG P, BRUCE A. Robust wavelet denoising[J]. IEEE Transactions on Signal Processing, 2001, 49(6): 1146-1152.
[21] WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, 2018: 1451-1460.
[22] WANG Q, WU B, ZHU P, et al. Supplementary material for ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 13-19.
[23] YANG W, WANG W, HUANG H, et al. Sparse gradient regularized deep retinex network for robust low-light image enhancement[J]. IEEE Transactions on Image Processing, 2021, 30: 2072-2086.
[24] DANG-NGUYEN D-T, PASQUINI C, CONOTTER V, et al. RAISE: a raw images dataset for digital image forensics[C]//Proceedings of the 6th ACM Multimedia Systems Conference, 2015: 219-224.
[25] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[26] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2012, 20(3): 209-212.
[27] GUO X, LI Y, LING H. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2016, 26(2): 982-993.
[28] FU X, LIAO Y, ZENG D, et al. A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation[J]. IEEE Transactions on Image Processing, 2015, 24(12): 4965-4977.
[29] FU X, ZENG D, HUANG Y, et al. A fusion-based enhancing method for weakly illuminated images[J]. Signal Processing, 2016, 129: 82-96.
[30] LI M, LIU J, YANG W, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828-2841.
[31] YANG W, WANG S, FANG Y, et al. From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3063-3072. |