计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (4): 331-337.DOI: 10.3778/j.issn.1002-8331.2211-0071

• 工程与应用 • 上一篇    下一篇

基于结构化自注意力网络的对话症状推断

潘丁豪,杨志豪,林鸿飞,王健   

  1. 大连理工大学 计算机科学与技术学院,辽宁  大连  116024
  • 出版日期:2024-02-15 发布日期:2024-02-15

Dialogue Symptom Inference Based on Structured Self-Attention Network

PAN Dinghao, YANG Zhihao, LIN Hongfei, WANG Jian   

  1. School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
  • Online:2024-02-15 Published:2024-02-15

摘要: 症状推断是自动诊断医学对话系统的关键组成部分。近年来,随着网络问诊的兴起,医患对话文本的数量不断增加,原先基于电子健康记录的症状推断研究逐渐转移至医患对话文本。现存的大多数研究都忽略了对话特有的角色与症状实体结构先验知识,而这两种先验知识能够帮助模型更好地学习上下文的关联。提出了基于角色与实体结构先验知识的改良自注意力网络,并与预训练语言模型相结合。该模型将角色与实体结构先验知识融入文本的编码阶段中,能够更准确地进行症状实体的属性推断。使用CBLUE2.0榜单的CHIP-MDCFNPC数据集评估模型的性能。在CBLUE2.0榜单的CHIP-MDCFNPC数据集上的实验结果表明,该模型与基线模型对比取得了性能的提升,验证了先验知识与模型结构的有效性。

关键词: 医患对话, 症状诊断, 结构化自注意力网络

Abstract: Symptom inference is a critical component of the medical dialogue system for automatic diagnosis. With the improvement of online diagnosis in recent years, the number of doctor-patient dialogue texts has continued to increase. The initial research on symptom inference based on electronic health records has gradually shifted to doctor-patient dialogue texts. However, most existing studies ignore the special role and symptom entity structure prior knowledge in dialogue, which can help the model learn contextual associations better. Therefore, this paper proposes an improved self-attention network based on the prior knowledge of role and entity structure and combines it with a pre-trained language model. The proposed model integrates the prior knowledge of role and entity structure into the encoding stage of the text, and can more accurately infer the attributes of symptom entities. Experimental results on the CHIP-MDCFNPC dataset of the CBLUE2.0 show that the proposed model outperforms the baseline model, which verifies the effectiveness of prior knowledge and model structure.

Key words: doctor-patient dialogue, symptom inference, structured self-attention network