[1] LAFLAMME M A, MURRY C E. Heart regeneration[J]. Nature, 2011, 473(7347): 326-335.
[2] TOWNSEND N, WILSON L, BHATNAGAR P, et al. Cardiovascular disease in Europe: epidemiological update 2016[J]. European Heart Journal, 2016, 37(42): 3232-3245.
[3] World Health Organization. A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013[R]. World Health Organization, 2013.
[4] ?PINAR J. Hypertension and ischemic heart disease[J]. Cor et Vasa, 2012, 54(6): e433-e438.
[5] 陈晓, 杨瑶. 基于长期递归卷积网络的无创血压测量[J]. 电子测量技术, 2022, 45(4): 139-146.
CHEN X, YANG Y. Noninvasive blood pressure measurement based on long-term recursive convolution network[J]. Electronic Measurement Technology, 2022, 45(4): 139-146.
[6] SIARON K B, CORTES M X, STUTZMAN S E, et al. Blood pressure measurements are site dependent in a cohort of patients with neurological illness[J]. Scientific Reports, 2020, 10(1): 1-7.
[7] LI Y H, HARFIYA L N, PURWANDARI K, et al. Real-time cuffless continuous blood pressure estimation using deep learning model[J]. Sensors, 2020, 20(19): 5606.
[8] KACHUEE M, KIANI M M, MOHAMMADZADE H, et al. Cuffless blood pressure estimation algorithms for continuous health-care monitoring[J]. IEEE Transactions on Biomedical Engineering, 2016, 64(4): 859-869.
[9] MARTíNEZ G, HOWARD N, ABBOTT D, et al. Can photoplethysmography replace arterial blood pressure in the assessment of blood pressure?[J]. Journal of Clinical Medicine, 2018, 7(10): 316.
[10] KACHUEE M, KIANI M M, MOHAMMADZADE H, et al. Cuffless high-accuracy calibration-free blood pressure estimation using pulse transit time[C]//Proceedings of the 2015 IEEE International Symposium on Circuits and Systems, 2015: 1006-1009.
[11] 吴丹. 基于深度神经网络的连续无创血压检测及其应用研究[D]. 北京: 中国科学院大学 (中国科学院深圳先进技术研究院), 2017.
WU D. Continuous and noninvasive blood pressure measurement based on deep network and its applications[D]. Beijing: University of Chinese Academy of Sciences (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), 2017.
[12] ATHAYA T, CHOI S. An estimation method of continuous non-invasive arterial blood pressure waveform using photoplethysmography: a U-net architecture-based approach[J]. Sensors, 2021, 21(5): 1867.
[13] IBTEHAZ N, RAHMAN M S. MultiResUNet: rethinking the U-net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 2020, 121: 74-87.
[14] SLAPNI?AR G, MLAKAR N, LU?TREK M. Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network[J]. Sensors, 2019, 19(15): 3420.
[15] O’BRIEN E, PETRIE J, LITTLER W A, et al. The British hypertension society protocol for the evaluation of blood pressure measuring devices[J]. Journal of Hypertension, 1993, 11(S2): 43-62.
[16] Association for the Advancement of Medical Instrumentation. Manual, electronic or automated sphygmomanometers: ANSI/AAMI SP10-2002/A1[S]. American National Standards Institute, Inc, 2003.
[17] MOUSAVI S S, FIROUZMAND M, CHARMI M, et al. Blood pressure estimation from appropriate and inappropriate PPG signals using a whole-based method[J]. Biomedical Signal Processing and Control, 2019, 47: 196-206.
[18] WANG L, ZHOU W, XING Y, et al. A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram[J]. Journal of Healthcare Engineering, 2018. DOI:10.1155/2018/7804243.
[19] HARFIYA L N, CHANG C C, LI Y H. Continuous blood pressure estimation using exclusively photopletysmography by LSTM-based signal-to-signal translation[J]. Sensors, 2021, 21(9): 2952.
[20] CHUANG C C, LEE C C, YENG C H, et al. Attention mechanism-based convolutional long short-term memory neural networks to electrocardiogram-based blood pressure estimation[J]. Applied Sciences, 2021, 11(24): 12019. |